Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T09:24:07.355Z Has data issue: false hasContentIssue false

VUV photochemistry of PAHs trapped in interstellar water ice

Published online by Cambridge University Press:  30 March 2011

J. Bouwman
Affiliation:
Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
H.M. Cuppen
Affiliation:
Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
L.J. Allamandola
Affiliation:
NASA-Ames Research Center, Space Science Division, Mail Stop 245-6, Moffett Field, CA 94035, USA
H. Linnartz
Affiliation:
Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mid-infrared emission of Polycyclic Aromatic Hydrocarbons is found in many phases of the interstellar medium. Towards cold dense clouds, however, the emission is heavily quenched. In these regions molecules are found to efficiently freeze-out on interstellar grains forming thin layers of ices. PAHs are highly non-volatile molecules and are also expected to freeze-out. PAHs trapped in interstellar ices are likely to participate in the overall chemistry, leading to the formation of cations and complex molecules in the solid-state. The work presented here aims to experimentally study the chemical reactions that PAHs undergo upon vacuum ultraviolet irradiation when trapped in interstellar H2O ice.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

References

Ashbourn, S.F.M., Elsila, J.E., Dworkin, J.P., et al., 2007, Meteorit. Planet. Sci., 42, 2035 CrossRef
Bernstein, M.P., Sandford, S.A., Allamandola, L.J., et al., 1999, Science, 283, 1135 CrossRef
Bouwman, J., Cuppen, H.M., Allamandola, L.J., & Linnartz, H., 2011a, A&A, accepted
Bouwman, J., Cuppen, H.M., Bakker, A., Allamandola, L.J., & Linnartz, H., 2010, A&A, 511, A33+
Bouwman, J., Mattioda, A.L., Allamandola, L.J., & Linnartz, H., 2011b, A&A, 525, A93
Bouwman, J., Paardekooper, D.M., Cuppen, H.M., Linnartz, H., & Allamandola, L.J., 2009, ApJ, 700, 56 CrossRef
Gibb, E.L., Whittet, D.C.B., Schutte, W.A., et al., 2000, ApJ, 536, 347 CrossRef
Gudipati, M.S., & Allamandola, L.J., 2003, ApJ, 596, L195 CrossRef
Hudgins, D.M., & Allamandola, L.J., 1995a, J. Phys. Chem., 99, 3033 CrossRef
Hudgins, D.M., & Allamandola, L.J., 1995b, J. Phys. Chem., 99, 8978 CrossRef
Hudgins, D.M., Sandford, S.A., & Allamandola, L.J., 1994, J. Phys. Chem., 98, 4243 CrossRef
Keane, J.V., Tielens, A.G.G.M., Boogert, A.C.A., et al., 2001, A&A, 376, 254