Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T15:35:18.159Z Has data issue: false hasContentIssue false

Temperature and gravity scales in hot stars

Published online by Cambridge University Press:  25 February 2014

M.-F. Nieva*
Affiliation:
Dr. Karl Remeis-Observatory & ECAP, University of Erlangen-Nuremberg, Sternwartstr. 7, 96049 Bamberg, Germany Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstr. 25/8, 6020 Innsbruck, Austria
Get access

Abstract

Precise determinations of effective temperatures and surface gravities are mandatory to derive not only reliable chemical abundances, but also parameters like distances, masses, radii and luminosities in OB stars. We have previously determined atmospheric parameters of 30 well-studied OB main sequence to giant stars via multiple ionization equilibria in NLTE, reaching uncertainties as low as ∼300 K for effective temperature and ∼0.05 dex for surface gravity. Based on the comparison of our spectroscopic parameters and reddening-independent quantities of the Johnson and Strömgren photometric systems, temperature and gravity calibrations are proposed to different photometric indices depending on the luminosity class. With these calibrations, effective temperatures can be determined at a precision of ∼400 K for luminosity classes III/IV and of ∼800 K for luminosity class V. Surface gravities can reach internal uncertainties as low as ∼0.08 dex. Our uncertainties are smaller than typical differences among other methods in the literature, which reach values up to ± 2000 K for temperature and ± 0.25 dex for gravity, and in extreme cases, + 6000 K and ± 0.4 dex, respectively.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Briquet, M., Aerts, C., Baglin, A., et al., 2011, A&A, 527, 112 (Paper III)
Butler, K., & Giddings, J.R., 1985, Newsletter of Analysis of Astronomical Spectra, No. 9 (University College London)Google Scholar
Cunha, K., & Lambert, D.L., 1992, ApJ, 399, 586CrossRef
Daflon, S., Cunha, K., & Becker, S.R., 1999, ApJ, 522, 950CrossRef
Giddings, J.R., 1981, Ph.D. Thesis (Univ. London)
Kilian, J., Becker, S.R., Gehren, T., & Nissen, P.E., 1991, A&A, 244, 419
Kurucz, R.L., 1993a, CD-ROM No. 2–12 (SAO, Cambridge, Mass.)
Kurucz, R.L., 1993b, CD-ROM No. 13 (SAO, Cambridge, Mass.)
Lyubimkov, L.S., Rachkovskaya, T.M., Rostopchin, S.I., et al., 2002, MNRAS, 333, 9CrossRef
Morel, T., & Butler, K., 2008, A&A, 487, 307
Napiwotzki, R., Schönberner, D., & Wenske, V., 1993, A&A, 268, 653
Nieva, M.F., 2007, Ph.D. Thesis (Univ. Erlangen-Nuremberg & Observatório Nacional, Brazil)
Nieva, M.F., 2013, A&A, 550, 26PubMed
Nieva, M.F., & Przybilla, N., 2007, A&A, 467, 295
Nieva, M.F., & Przybilla, N., 2008, A&A, 481, 199
Nieva, M.F., & Przybilla, N., 2012, A&A, 539, A143 (Paper I)
Nieva, M.F., & Simón-Díaz, S., 2011, A&A, 532, 2 (Paper II)
Przybilla, N., Nieva, M.F., & Butler, K., 2008, ApJ, 688, L103CrossRef
Przybilla, N., Nieva, M.F., & Butler, K., 2011, JPhCS, 328, 012015
Puls, J., Urbaneja, M., Venero, R., et al., 2005, A&A, 435, 669
Simón-Díaz, S., 2010, A&A, 510, A22