Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-01T09:30:28.730Z Has data issue: false hasContentIssue false

Observation of magnetic reconnection at the turbulent leading edge of an interplanetary coronal mass ejection

Published online by Cambridge University Press:  27 June 2012

A.C.-L. Chian
Affiliation:
Observatoire de Paris, LESIA, CNRS, 92195 Meudon, France. e-mail: Abraham.Chian@obspm.fr National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), São José dos Campos-SP 12227-010, Brazil Institute of Aeronautical Technology (ITA), São José dos Campos-SP 12228-900, Brazil; e-mail: pablocus@gmail.com
P.R. Muñoz
Affiliation:
Institute of Aeronautical Technology (ITA), São José dos Campos-SP 12228-900, Brazil; e-mail: pablocus@gmail.com
Get access

Abstract

Magnetic Cloud Boundary Layer (MCBL) is formed by the interaction between a magnetic cloud ejected by the Sun and the ambient solar wind, which may be linked to the outer loops of an Interplanetary Coronal Mass Ejection (ICME) and often display the properties of magnetic reconnection. We study the relation between current sheets, turbulence, and magnetic reconnection at the leading edge of an ICME intercepted by the four Cluster spacecraft in the solar wind, upstream of the Earth’s bow shock, on 2005 January 21. We obtain the observational evidence of a fully-developed magnetic turbulence in the vicinity of two current sheets at the leading edge of ICME. Each current sheet shows the signatures of magnetic reconnections with oppositely propagating Alfven waves and jets. The current density of bifurcated current sheets is computed by the curlometer technique using multi-spacecraft data.

Type
Research Article
Copyright
© EAS, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chian, A.C.-L., Han, M., Miranda, R.A., Shu, C., & Valdivia, J.A., 2010, Adv. Space Res., 46, 472 CrossRef
Chian, A.C.-L., & Muñoz, P.R., 2011, ApJ, 733, L34 CrossRef
Dunlop, M.W., Balogh, A., Glassmeier, K.-H., & Robert, P., 2002, J. Geophys. Res., 107, A1384 CrossRef
Foullon, C., et al., 2007, Sol. Phys., 244, 139 CrossRef
Gosling, J.T., Eriksson, S., McComas, D.J., Pha, T.D., & Skoug, R.M., 2007, J. Geophys. Res., 112, A08106 CrossRef
Gosling, J.T., Skoug, R.M., McComas, D.J., & Smith, C.W., 2005a, J. Geophys. Res., 110, A01107 CrossRef
Gosling, J.T., Skoug, R.M., McComas, D.J., & Smith, C.W., 2005b, Geophys. Res. Lett., 32, L05105 CrossRef
Kamide, Y., & Chian, A.C.-L., (eds.) 2007, Handbook of the Solar-Terrestrial Environment (Berlin, Springer)
Li, G., 2008, ApJ, 672, L65 CrossRef
Muñoz, P.R., Chian, A.C.-L., Miranda, R.A., & Yamada, M., 2010, in IAU Symp. 264, Solar and Stellar Variability : Impact on Earth and Planets, ed. A.G. Kosovichev, A.H. Andrei & J.-P. Rozelot (Cambridge : Cambridge Univ. Press), 369
Sonnerup, B.U.O., & Cahill, L.J., 1967, J. Geophys. Res., 72, 171 CrossRef
Sonnerup, B.U.O., et al., 1981, J. Geophys. Res., 86, A10049 CrossRef
Wei, F.S., Hu, Q., Feng, X.S., & Fang, Q., 2003a, Space Sci. Rev., 107, 107 CrossRef
Wei, F.S., Liu, R., Fan, Q., & Feng, X.S., 2003b, J. Geophys. Res., 108, A1263 CrossRef
Wei, F.S., Liu, R., Feng, X.S., Zhong, D., & Yang, F., 2003c, Geophys. Res. Lett., 30, 2283 CrossRef
Wei, F.S., Feng, X.S., Yang, F., & Zhong, D., 2006, J. Geophys. Res., 111, A03102