Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T07:14:01.667Z Has data issue: false hasContentIssue false

The nature of the rapidly oscillating Ap stars' pulsations

Published online by Cambridge University Press:  19 December 2013

M.S. Cunha*
Affiliation:
Centro de Astrofísica e Faculdade de Ciências, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
K. Perraut
Affiliation:
UJF-Grenoble 1/CNRS-INSU, Institut de Plantologie et d'Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France
*
Get access

Abstract

Chemically peculiar stars are stage to a wide variety of physical phenomena, including diffusion, convection, magnetism and pulsation. Progress in the understanding of these objects, through the study of their oscillations, can help us to characterize these physical phenomena and better understand the way they are coupled in stars. A number of chemically peculiar A-type stars, known as rapidly oscillating Ap (roAp) stars, have been known to exhibit high frequency oscillations since the early 80s. Despite this, the mechanism responsible for driving these oscillations is not fully understood. Currently, the most widely accepted theory states that oscillations in this class of pulsators are excited by the opacity mechanism acting on the hydrogen ionization region, in an envelope where convection has been suppressed by a strong magnetic field. Nevertheless, this theory fails to correctly predict some of the observations for this class of pulsators. In this paper we briefly review the current status of understanding of the driving of pulsations in roAp stars. In particular, we shall emphasize the comparison between predictions of nonadiabatic models of roAp stars with observations of a subset of pulsators of this class for which stringent data on global parameters are available.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N.J., 1992, MNRAS, 255, 603CrossRef
Balmforth, N.J., Cunha, M.S., Dolez, N., Gough, D.O., & Vauclair, S., 2001, MNRAS, 323, 362CrossRef
Bruntt, H., Kervella, P., Mérand, A., et al., 2010, A&A, 512, A55
Bruntt, H., North, J.R., & Cunha, M., et al., 2008, MNRAS, 386, 2039CrossRef
Cunha, M.S., 2002, MNRAS, 333, 47CrossRef
Cunha, M.S., 2007, Comm. Asteroseismol., 150, 48CrossRef
Cunha, M.S., Alentiev, D., Brandão, I.M., & Perraut, K., 2013, MNRAS
Cunha, M.S., Théado, S., & Vauclair, S., 2004, in IAU Symposium, Vol. 224, The A-Star Puzzle, ed. Zverko, J., Ziznovsky, J., Adelman, S.J. & Weiss, W.W., 359CrossRef
Gough, D.O., 1977, Lect. Notes Phys. (Berlin Springer Verlag), Vol. 71, Problems of Stellar Convection, ed. Spiegel, E.A. & Zahn, J.-P., 349Google Scholar
Kochukhov, O., & Bagnulo, S., 2006, A&A, 450, 763
Kochukhov, O., Shulyak, D., & Ryabchikova, T., 2009, A&A, 499, 851
Nesvacil, N., Shulyak, D., Ryabchikova, T.A., et al., 2012 [arXiv:1212.3163]
Perraut, K., Borgniet, S., Cunha, M., et al., 2013 [arXiv:1309.4423]
Perraut, K., Brandão, I., Mourard, D., et al., 2011, A&A, 526, A89
Saio, H., 2005, MNRAS, 360, 1022CrossRef
Shulyak, D., Ryabchikova, T., & Kochukhov, O., 2013, A&A, 551, A14
Théado, S., Vauclair, S., & Cunha, M.S., 2005, A&A, 443, 627