Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T02:48:35.026Z Has data issue: false hasContentIssue false

Accretion of planetary matter from debris disks around white dwarfs: the fate of planetary systems

Published online by Cambridge University Press:  19 December 2013

M. Deal*
Affiliation:
Université de Toulouse, UPS-OMP, IRAP, France CNRS, IRAP, 14 avenue Edouard Belin, 31400 Toulouse, France
S. Deheuvels*
Affiliation:
Université de Toulouse, UPS-OMP, IRAP, France CNRS, IRAP, 14 avenue Edouard Belin, 31400 Toulouse, France
G. Vauclair*
Affiliation:
Université de Toulouse, UPS-OMP, IRAP, France CNRS, IRAP, 14 avenue Edouard Belin, 31400 Toulouse, France
S. Vauclair*
Affiliation:
Université de Toulouse, UPS-OMP, IRAP, France CNRS, IRAP, 14 avenue Edouard Belin, 31400 Toulouse, France
F.C. Wachlin*
Affiliation:
Facultad de Ciencias Astronomicas y Geosicas, 20646 La plata, Argentina Instituto de Astrosica de La Plata, 20646 La plata, Argentina
Get access

Abstract

Heavy elements are observed in the atmospheres of many DA and DB white dwarfs, and their presence is attributed to the accretion of matter coming from debris disks. Several authors have deduced accretion rates from the observed abundances, taking into account the mixing induced by the convective zones and the gravitational settling. The obtained values are different for DA and DB white dwarfs. Here we show that an important process was forgotten in all these computations: thermohaline mixing, induced by the inverse μ-gradient built during the accretion process. Taking this mixing into account leads to an increase of the derived accretion rates, specially for DA white dwarfs, and modifies the conclusions.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C.J., Poirier, J.-P., Humler, E., & Hofmann, A.W., 1995, Earth Planet. Sci. Lett., 134, 515CrossRef
Brinkworth, C.S., Gänsicke, B.T., Girven, J.M., et al., 2012, ApJ, 750, 86CrossRef
Chayer, P., Fontaine, G., & Wesemael, F., 1995, ApJS, 99, 189CrossRef
Desharnais, S., Wesemael, F., Chayer, P., Kruk, J.W., & Saffer, R.A., 2008, ApJ, 672, 540CrossRef
Dupuis, J., Fontaine, G., Pelletier, C., & Wesemael, F., 1992, ApJS, 82, 505CrossRef
Dupuis, J., Fontaine, G., Pelletier, C., & Wesemael, F., 1993a, ApJS, 84, 73CrossRef
Dupuis, J., Fontaine, G., & Wesemael, F., 1993b, ApJS, 87, 345CrossRef
Farihi, J., 2011, Am. Inst. Phys. Conf. Ser., Vol. 1331, ed. Schuh, S., Drechsel, H. & Heber, U., 193
Farihi, J., Gänsicke, B.T., Wyatt, M.C., et al., 2012, MNRAS, 424, 464CrossRef
Garaud, P., 2011, ApJ, 728, L30CrossRef
Girven, J., Brinkworth, C.S., Farihi, J., et al., 2012, ApJ, 749, 154CrossRef
Jura, M., 2003, ApJ, 584, L91CrossRef
Klein, B., Jura, M., Koester, D., Zuckerman, B., & Melis, C., 2010, ApJ, 709, 950CrossRef
Koester, D., 2009, A&A, 498, 517
Koester, D., & Wilken, D., 2006, A&A, 453, 1051
Melis, C., Farihi, J., Dufour, P., et al., 2011, ApJ, 732, 90CrossRef
Théado, S., & Vauclair, S., 2012, ApJ, 744, 123CrossRef
Traxler, A., Garaud, P., & Stellmach, S., 2011, ApJ, 728, L29CrossRef
Vauclair, G., Vauclair, S., & Greenstein, J.L., 1979, A&A, 80, 79
Vauclair, S., 2004, ApJ, 605, 874CrossRef
Vauclair, S., & Théado, S., 2012, ApJ, 753, 49CrossRef
Xu, S., & Jura, M., 2012, ApJ, 745, 88CrossRef
Zuckerman, B., Koester, D., Dufour, P., et al., 2011, ApJ, 739, 101CrossRef
Zuckerman, B., Koester, D., Melis, C., Hansen, B.M., & Jura, M., 2007, ApJ, 671, 872CrossRef
Zuckerman, B., Melis, C., Klein, B., Koester, D., & Jura, M., 2010, ApJ, 722, 725CrossRef