Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-24T13:12:28.185Z Has data issue: false hasContentIssue false

Stochastic differential equations driven by processes generated by divergence form operators II: convergence results

Published online by Cambridge University Press:  25 July 2008

Antoine Lejay*
Affiliation:
Projet TOSCA, INRIA & Institut Élie Cartan UMR 7502, Nancy-Université, CNRS, INRIA. Campus scientifique, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France; Antoine.Lejay@iecn.u-nancy.fr
Get access

Abstract

We have seen in a previous article how the theory of “rough paths” allows us to construct solutions of differential equations driven by processes generated by divergence form operators. In this article, we study a convergence criterion which implies that one can interchange the integral with the limit of a family of stochastic processes generated by divergence form operators. As a corollary, we identify stochastic integrals constructed with the theory of rough paths with Stratonovich or Itô integrals already constructed for stochastic processes generated by divergence form operators by using time-reversal techniques.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. Adams, Sobolev spaces. Academic Press (1975).
F. Baudoin, An introduction to the geometry of stochastic flows. Imperial College Press, London (2004).
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland (1978).
P. Billingsley, Convergence of Probability Measures. Wiley (1968).
Batty, C.J.K., Bratteli, O., Jørgensen, P.E.T. and Robinson, D.W., Asymptotics of periodic subelliptic operators. J. Geom. Anal. 5 (1995) 427443. CrossRef
L. Capogna, D. Danielli, S.D. Pauls and J.T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics, Vol. 259. Birkhäuser (2007).
Coutin, L., Friz, P. and Victoir, N., Good Rough Path Sequences and Applications to Anticipating Stochastic Calculus. Ann. Prob. 35 (2007) 11721193. CrossRef
Coutin, L. and Lejay, A., Semi-martingales and rough paths theory. Electron. J. Probab. 10 (2005) 761785. CrossRef
Coquet, F. and Słomiński, L., On the convergence of Dirichlet processes. Bernoulli 5 (1999) 615639. CrossRef
S.N. Ethier and T.G. Kurtz, Markov Processes, Characterization and Convergence. Wiley (1986).
H. Föllmer, Dirichlet processes, in Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980), Lecture Notes in Math. 851 476–478. Springer, Berlin (1981).
M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Process. De Gruyter (1994).
Friz, P. and Victoir, N., A note on the notion of geometric rough path. Probab. Theory Related Fields 136 (2006) 395416. CrossRef
P. Friz and N. Victoir, On Uniformly Subelliptic Operators and Stochastic Area. Preprint Cambridge University (2006). <arXiv:math.PR/0609007>.
V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer-Verlag (1994).
T.G. Kurtz and P. Protter, Weak Convergence of Stochastic Integrals and Differential Equations, in Probabilistic Models for Nonlinear Partial Differential Equations, Montecatini Terme, 1995, Talay D. and Tubaro L. Eds., Lecture Notes in Math. 1629 1–41. Springer-Verlag (1996).
I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-Verlag, 2nd edition (1991).
A. Lejay, Méthodes probabilistes pour l'homogénéisation des opérateurs sous forme-divergence : cas linéaires et semi-linéaires. Ph.D. thesis, Université de Provence, Marseille, France (2000). <url: http://www.iecn.u-nancy.fr/~lejay/>.
Lejay, A., Probabilistic Approach, A of the Homogenization of Divergence-Form Operators in Periodic Media. Asymptot. Anal. 28 (2001) 151162.
A. Lejay, On the convergence of stochastic integrals driven by processes converging on account of a homogenization property. Electron. J. Probab. 7 1–18 (2002).
A. Lejay, An introduction to rough paths, in Séminaire de probabilités, XXXVII, Lect. Notes Math. 1832 1–59, Springer, Berlin (2003).
Lejay, A., Stochastic Differential Equations driven by processes generated by divergence form operators I: a Wong-Zakai theorem. ESAIM: PS 10 (2006) 356379. CrossRef
A. Lejay, Yet another introduction to rough paths. Preprint, Institut Élie Cartan, Nancy (2006). <http://hal.inria.fr/inria-00107460>.
A. Lejay and T.J. Lyons, On the Importance of the Lévy Area for Systems Controlled by Converging Stochastic Processes. Application to Homogenization, in New Trend in Potential Theory, D. Bakry, L. Beznea, Gh. Bucur and M. Röckner Eds., The Theta Foundation (2006).
Lejay, A. and Victoir, N., On (p,q)-rough paths. J. Diff. Equ. 225 (2006) 103133. CrossRef
T. Lyons and Z. Qian, System Control and Rough Paths. Oxford Mathematical Monographs. Oxford University Press (2002).
Lyons, T.J. and Stoica, L., The limits of stochastic integrals of differential forms. Ann. Probab. 27 (1999) 149.
Lyons, T.J., Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215310. CrossRef
Marcellini, P., Convergence of Second Order Linear Elliptic Operator. Boll. Un. Mat. Ital. B (5) 16 (1979) 278290.
R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs 91. American Mathematical Society, Providence, RI (2002).
Rozkosz, A., Stochastic Representation of Diffusions Corresponding to Divergence Form Operators. Stochastic Process. Appl. 63 (1996) 1133. CrossRef
Rozkosz, A., Weak Convergence of Diffusions Corresponding to Divergence Form Operator. Stochastics Stochastics Rep. 57 (1996) 129157. CrossRef
Rozkosz, A. and Slomiński, L., Extended Convergence of Dirichlet Processes. Stochastics Stochastics Rep. 65 (1998) 12, 79–109. CrossRef
D.W. Stroock, Diffusion Semigroups Corresponding to Uniformly Elliptic Divergence Form Operator, in Séminaire de Probabilités XXII, Lecture Notes in Math. 1321 316–347. Springer-Verlag (1988).