Skip to main content Accessibility help

Convex rearrangements of Lévy processes

  • Youri Davydov (a1) and Emmanuel Thilly (a2)


In this paper we study asymptotic behavior of convex rearrangements of Lévy processes. In particular we obtain Glivenko-Cantelli-type strong limit theorems for the convexifications when the corresponding Lévy measure is regularly varying at + with exponent α ∈ (1,2).



Hide All
[1] J-M. Azaïs, M. Wschebor, Almost sure oscillation of certain random processes. Bernoulli 2 (1996) 257270.
[2] J. Bertoin, Lévy processes. Cambridge University Press (1998).
[3] N.J. Bingham, C.M. Goldie and J.L. Teugels, Regular variation. Cambridge University Press (1987).
[4] Csörgö, M., Gastwirth, J.L. and Zitikis, R., Asymptotic confidence bands for the Lorenz and Bonferroni curves based on the empirical Lorenz curve. J. Statistical Planning and Inference 74 (1998) 6591.
[5] M. Csörgö and R. Zitikis, On confidence bands for the Lorenz and Goldie curves, in Advances in the theory and practice of statistics. Wiley, New York (1997) 261–281.
[6] Csörgö, M. and Zitikis, R., On the rate of strong consistency of Lorenz curves. Statist. Probab. Lett. 34 (1997) 113121.
[7] Csörgö, M. and Zitikis, R., Strassen's LIL for the Lorenz curve. J. Multivariate Anal. 59 (1996) 112.
[8] Davydov, Y., Convex rearrangements of stable processes. J. Math. Sci. 92 (1998) 40104016.
[9] Davydov, Y. and Egorov, V., Functional limit theorems for induced order statistics. Math. Methods Stat. 9 (2000) 297313.
[10] Davydov, Y., Khoshnevisan, D., Shi, Zh. and Zitikis, R., Convex Rearrangements, Generalized Lorenz Curves, and Correlated Gaussian Data. J. Statistical Planning and Inference 137 (2006) 915934.
[11] Davydov, Y. and Thilly, E., Convex rearrangements of Gaussian processes. Theory Probab. Appl. 47 (2002) 219235.
[12] Y. Davydov and E. Thilly, Convex rearrangements of smoothed random processes, in Limit theorems in probability and statistics. Fourth Hungarian colloquium on limit theorems in probability and statistics, Balatonlelle, Hungary, June 28–July 2, 1999. Vol I. I. Berkes et al., Eds. Janos Bolyai Mathematical Society, Budapest (2002) 521–552.
[13] Y. Davydov and A.M. Vershik, Réarrangements convexes des marches aléatoires. Ann. Inst. Henri Poincaré, Probab. Stat. 34 (1998) 73–95.
[14] Davydov, Y. and Zitikis, R., Generalized Lorenz curves and convexifications of stochastic processes. J. Appl. Probab. 40 (2003) 906925.
[15] Y. Davydov and R. Zitikis, Convex rearrangements of random elements, in Asymptotic Methods in Stochastics. American Mathematical Society, Providence, RI (2004) 141–171.
[16] Doney, R.A. and Maller, R.A., Stability and attraction to normality for Lévy processes at zero and at infinity. J. Theor. Probab. 15 (2002) 751792.
[17] W. Feller, An introduction to probability theory and its applications, Vol. I and II. John Wiley and Sons Ed. (1968).
[18] I.I. Gihman and A.V. Skorohod, Introduction to the theory of random processes. W. B. Saunders Co., Philadelphia, PA (1969).
[19] W. Linde, Probability in Banach Spaces – Stable and Infinitely Divisible Distributions. Wiley, Chichester (1986).
[20] Philippe, A. and Thilly, E., Identification of locally self-similar Gaussian process by using convex rearrangements. Methodol. Comput. Appl. Probab. 4 (2002) 195209.
[21] B. Ramachandran, On characteristic functions and moments. Sankhya 31 Series A (1969) 1–12.
[22] Wschebor, M., Almost sure weak convergence of the increments of Lévy processes. Stochastic Proc. App. 55 (1995) 253270.
[23] M. Wschebor, Smoothing and occupation measures of stochastic processes. Ann. Fac. Sci. Toulouse, Math 15 (2006) 125–156.


Convex rearrangements of Lévy processes

  • Youri Davydov (a1) and Emmanuel Thilly (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed