Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-5zjcf Total loading time: 0.234 Render date: 2022-08-20T02:26:16.331Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Local martingales and filtration shrinkage

Published online by Cambridge University Press:  15 October 2010

Hans Föllmer
Affiliation:
Humboldt Universität, Berlin, Germany
Philip Protter
Affiliation:
Supported in part by NSF Grant DMS-0906995; Statistics, Columbia University, New York, NY, 10027, USA. protter@stat.columbia.edu
Get access

Abstract

A general theory is developed for the projection of martingale related processes onto smaller filtrations, to which they are not even adapted. Martingales, supermartingales, and semimartingales retain their nature, but the case of local martingales is more delicate, as illustrated by an explicit case study for the inverse Bessel process. This has implications for the concept of No Free Lunch with Vanishing Risk, in Finance.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blei, S. and Engelbert, H.J., Exponential Local Martingales Associated, On with Strong Markov Continuous Local Martingales. Stoch. Process. Appl. 119 (2009) 28592880. CrossRef
Brémaud, P. and Yor, M., Changes of Filtration and Probability Measures. Z. Wahrscheinlichkeitstheorie verw. Gebiete 45 (1978) 269295. CrossRef
Çetin, U., Jarrow, R., Protter, P. and Yildirim, Y., Modeling credit risk with partial information. Ann. Appl. Probab. 14 (2004) 11671178.
Cox, A. and Hobson, D., Local martingales, bubbles and option prices. Finance Stoch. 9 (2005) 477492. CrossRef
F. Delbaen and W. Schachermayer, The Mathematics of Arbitrage. Springer-Verlag, Heidelberg (2006).
C. Dellacherie and P.A. Meyer, Probabilités et Potentiel: Chapitres V à VIII, Théorie des Martingales. Hermann, Paris (1980).
Föllmer, H., The exit measure of a supermartingale. Z. Wahrscheinlichkeitstheorie verw. Gebiete 21 (1972) 154166. CrossRef
Föllmer, H., On the representation of semimartingales. Ann. Probab. 1 (1973) 580589. CrossRef
Föllmer, H., Protter, P. and Shiryaev, A.S., Quadratic covariation and an extension of Itô's formula. Bernoulli 1 (2005) 149169. CrossRef
Itô, K. and Watanabe, S., Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier 15 (1965) 1530. CrossRef
Jarrow, R. and Protter, P., Structural versus Reduced Form Models: A New Information Based Perspective. J. Invest. Manage. 2 (2004) 3443.
Jarrow, R. and Protter, P., Large Traders, Hidden Arbitrage, and Complete Markets. J. Bank. Financ. 29 (2005) 28032810. CrossRef
Jarrow, R., Protter, P. and Sezer, D., Information Reduction via Level Crossings in a Credit Risk Model. Finance Stoch. 11 (2007) 195212. CrossRef
R. Jarrow, P. Protter and K. Shimbo, Asset price bubbles in a complete market. Adv. Math. Finance, in Honor of Dilip B. Madan (2006) 105–130.
Jarrow, R., Protter, P. and Shimbo, K., Asset price bubbles in an incomplete market. Math. Finance 20 (2010) 145185. CrossRef
T. Jeulin and M. Yor, Inégalité de Hardy, semimartingales, et faux-amis, in Séminaire de Probabilités XIII. Lect. Notes Math. 721, Springer, Heidelberg, Berlin, New York (1979) 332–359.
Johnson, G. and Helms, L.L., Class (D) Supermartingales. Bull. Am. Math. Soc. 69 (1963) 5962. CrossRef
N. Kazamaki, Krickeberg's decomposition for local martingales, in Séminaire de Probabilités VI. Lecture Notes in Math. 258, Springer, Heidelberg, Berlin, New York (1972) 101–103.
Loewenstein, M. and Willard, G.A., Rational equilibrium asset-pricing bubbles in continuous trading models. J. Econ. Theory 91 (2000) 1758. CrossRef
P.A. Meyer, Probability and Potentials. Blaisdell, Waltham (1966).
P.A. Meyer, La mesure de H. Föllmer en théorie des surmartingales, in Séminaire de Probabilités VI. Lecture Notes in Math. 258, Springer, Heidelberg, Berlin, New York (1971) 118–129.
P.A. Meyer, Martingales and stochastic integrals. Lect. Notes Math. 284, Springer, Heidelberg, Berlin, New York (1972).
P.A. Meyer, Sur un théorème de C. Stricker, in Séminaire de Probabilités XI. Lecture Notes in Math. 581, Springer, Heidelberg, Berlin, New York (1977) 482–489.
A. Mijatović and M. Urusov, The Martingale Property of Certain Local Martingales. arXiv:0905.3701 (2009)
Pal, S. and Protter, P., Analysis of continuous strict local martingales via h-transforms. Stoch. Process. Appl. 120 (2010) 14241443. CrossRef
Protter, P., Partial Introduction, A to Financial Asset Pricing Theory. Stoch. Process. Appl. 91 (2001) 169203. CrossRef
P. Protter, Stochastic Integration and Differential Equations, 2nd edition, Version 2.1. Springer-Verlag, Heidelberg (2005).
D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edition. Springer, Berlin-Heidelberg (1999).
Sezer, D., Filtration shrinkage by level crossings of a diffusion. Ann. Probab. 35 (2007) 739757. CrossRef
Stricker, C., Quasimartingales, martingales locales, et filtrations naturelles. Z. Wahrscheinlichkeitstheorie verw. Gebiete 39 (1977) 5563. CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Local martingales and filtration shrinkage
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Local martingales and filtration shrinkage
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Local martingales and filtration shrinkage
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *