Skip to main content Accessibility help
×
Home

Branching random walks on binary search trees: convergence of the occupation measure

Published online by Cambridge University Press:  29 October 2010


Eric Fekete
Affiliation:
UVSQ, Département de Mathématiques, 45 av. des États-Unis, 78035 Versailles Cedex, France
Corresponding
E-mail address:

Get access

Abstract

We consider branching random walks with binary search trees as underlying trees. We show that the occupation measure of the branching random walk, up to some scaling factors, converges weakly to a deterministic measure. The limit depends on the stable law whose domain of attraction contains the law of the increments. The existence of such stable law is our fundamental hypothesis. As a consequence, using a one-to-one correspondence between binary trees and plane trees, we give a description of the asymptotics of the profile of recursive trees. The main result is also applied to the study of the size of the fragments of some homogeneous fragmentations.


Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

Aldous, D., Tree-based models for random distribution mass. J. Statist. Phys. 73 (1993) 625641. CrossRef
Bertoin, J., The asymptotic behavior of fragmentation processes. J. Eur. Math. Soc. 5 (2003) 395416. CrossRef
Biggins, J.D., Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 2537. CrossRef
P. Billingsley, Probability and measure. Second edition. John Wiley & Sons, New York (1986).
L. Breiman, Probability. Second edition. SIAM (1992).
Brown, G.G. and Shubert, B.O., On random binary trees. Math. Oper. Res. 9 (1985) 4365. CrossRef
Chassaing, P. and Schaeffer, G., Random planar lattices and integrated superbrownian excursion. Probab. Theory Relat. Fields 128 (2004) 161212. CrossRef
Chauvin, B., Klein, T., Marckert, J.F. and Rouault, A., Martingales and profile of binary search trees. Electron. J. Probab. 10 (2005) 420435. CrossRef
Devroye, L. and Hwang, H.K., Width and more of the profile for random trees of logarithmic height. Ann. Appl. Probab. 16 (2006) 886918. CrossRef
Drmota, M., Profile and height of random binary search trees. J. Iranian Stat. Soc. 3 (2004) 117138.
M. Fuchs, H.-K. Hwang and R. Neininger, Profiles of random trees: limit theorems for random recursive trees and binary search trees. Available at: http://algo.stat.sinica.edu.tw (2005).
Janson, S. and Marckert, J.F., Convergence of discrete snakes. J. Theory Probab. 18 (2005) 615645. CrossRef
O. Kallenberg, Fundations of Modern Probability. Second edition. Springer-Verlag, New York (2001).
D.E. Knuth, The art of computer programing, Volume 1: Fundamental algorithms. Second edition. Addison-Wesley, Reading, MA (1997).
M. Kuba and A. Panholzer, The left-right-imbalance of binary search trees. Available at: http://info.tuwien.ac.at/panholzer (2006).
Louchard, G., Exact and asymptotic distributions in digital and binary search trees. RAIRO Theoret. Inform. Appl. 21 (1987) 479496. CrossRef
H. Mahmoud, Evolution of Random Search Trees. John Wiley, New York (1992).
Mahmoud, H.M. and Neininger, R., Distribution of distances in random binary search trees. Ann. Appl. Prob. 13 (2003) 253276.
Mahmoud, H.M. and Smythe, R.T., A survey of recursive trees. Theoret. Probab. Math. Statist. 51 (1995) 127.
Marckert, J.-F., The rotation correspondence is asymptotically a dilatation. Random Struct. Algorithms 24 (2004) 118132. CrossRef
Slade, G. and Hara, T., The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-brownian excursion. J. Math. Phys. 41 (2000) 12441293.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 13 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-qjxlp Total loading time: 0.254 Render date: 2020-12-05T09:35:07.349Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 09:00:49 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Branching random walks on binary search trees: convergence of the occupation measure
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Branching random walks on binary search trees: convergence of the occupation measure
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Branching random walks on binary search trees: convergence of the occupation measure
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *