[1] Ambroso, A., Chalons, C., Coquel, F. and Galié, T., Relaxation and numerical approximation of a two-fluid two-pressure diphasic model. *ESAIM: M2AN* 43 (2009) 1063–1097.

[2] Ambroso, A., Chalons, C., Coquel, F., Godlewski, E., Lagoutière, F., P-A. Raviart and N. Seguin, The coupling of homogeneous models for two-phase flows. *Int. J. Finite* 4 (2007) 39.

[3] Ambroso, A., Chalons, C. and Raviart, P.-A., A Godunov-type method for the seven-equation model of compressible two-phase flow. *Comput. Fluids* 54 (2012) 67–91.

[4] Andrianov, N. and Warnecke, G., The Riemann problem for the Baer-Nunziato two-phase flow model. *J. Comput. Phys.* 195 (2004) 434–464.

[5] Baer, M.R. and Nunziato, J.W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. *Int. J. Multiphase Flow* 12 (1986) 861–889.

[6] C. Berthon, F. Coquel and P.G. LeFloch, Why many theories of shock waves are necessary: kinetic relations for non-conservative systems, in vol. 142 of *Proc. R. Soc. Edinburgh, Section: A Mathematics* (2012) 1–37.

[7] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. *Frontiers in Mathematics.* Birkhäuser Verlag, Basel (2004).

[8] Bouchut, F. and James, F., Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness. *Commun. Partial Differ. Eqs.* 24 (1999) 2173–2189.

[9] Boutin, B., Coquel, F. and LeFloch, P.G., Coupling nonlinear hyperbolic equations (iii). A regularization method based on thick interfaces. *SIAM J. Numer. Anal.* 51 (2013) 1108–1133.

[10] C. Chalons, F. Coquel, S. Kokh and N. Spillane, Large time-step numerical scheme for the seven-equation model of compressible two-phase flows, in vol. 4 of *Springer Proceedings in Mathematics, FVCA 6* (2011) 225–233.

[11] Chen, G-Q., Levermore, C.D. and Liu, T-P., Hyperbolic conservation laws with stiff relaxation terms and entropy. *Commun. Pure Appl. Math.* 47 (1994) 787–830.

[12] F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two-fluid two pressure model. *C. R. Acad. Sci.* I-334 (2002) 927–932.

[13] F. Coquel, E. Godlewski, B. Perthame, A. In and P. Rascle, Some new Godunov and relaxation methods for two-phase flow problems, in *Godunov methods (Oxford, 1999)*. Kluwer/Plenum, New York (2001) 179–188.

[14] Coquel, F., Godlewski, E. and Seguin, N., Relaxation of fluid systems. *Math. Models Methods Appl. Sci.* 22 (2012).

[15] Coquel, F., Hérard, J.-M. and Saleh, K., A splitting method for the isentropic Baer-Nunziato two-phase flow model. *ESAIM: Proc.*, 38 (2012) 241–256.

[16] Coquel, F., Hérard, J.-M., Saleh, K. and Seguin, N., Two properties of two-velocity two-pressure models for two-phase flows. *Commun. Math. Sci.* (2013) 11.

[18] Deledicque, V. and Papalexandris, M.V., A conservative approximation to compressible two-phase flow models in the stiff mechanical relaxation limit. *J. Comput. Phys.* 227 (2008) 9241–9270.

[19] Dumbser, M., Hidalgo, A., Castro, M., Parés, C. and Toro, E.F., FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems. *Comput. Methods Appl. Mech. Engrg.* 199 (2010) 625–647.

[20] Embid, P. and Baer, M., Mathematical analysis of a two-phase continuum mixture theory. *Contin. Mech. Thermodyn.* 4 (1992) 279–312.

[21] Gallouët, T., Hérard, J.-M. and Seguin, N., Numerical modeling of two-phase flows using the two-fluid two-pressure approach. *Math. Models Methods Appl. Sci.* 14 (2004) 663–700.

[22] Gavrilyuk, S. and Saurel, R., Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. *J. Comput. Phys.* 175 (2002) 326–360.

[23] Goatin, P. and LeFloch, P.G., The Riemann problem for a class of resonant hyperbolic systems of balance laws. *Ann. Institut. Henri Poincaré Anal. Non Linéaire* 21 (2004) 881–902.

[24] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, in vol. 118 of *Appl. Math. Sci.* Springer-Verlag, New York (1996).

[25] Hanouzet, B. and Natalini, R., Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. *Arch. Rational Mech. Anal.* 169 (2003) 89–117.

[26] Harten, A., Lax, P.D. and van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. *SIAM Rev.* 25 (1983) 35–61.

[27] Hérard, J.-M. and Hurisse, O., A fractional step method to compute a class of compressible gas-luiquid flows. *Comput. Fluids. Int. J.* 55 (2012) 57–69.

[28] Isaacson, E. and Temple, B., Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. *SIAM J. Appl. Math.* 55 (1995) 625–640.

[29] Kapila, A.K., Son, S.F., Bdzil, J.B., Menikoff, R. and Stewart, D.S., Two-phase modeling of DDT: Structure of the velocity-relaxation zone. *Phys. Fluids* 9 (1997) 3885–3897.

[30] Kawashima, S. and Yong, W.-A., Dissipative structure and entropy for hyperbolic systems of balance laws. *Archive for Rational Mech. Anal.* 174 (2004) 345–364.

[31] P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form. Preprint 593, *IMA, Minneapolis* (1991).

[32] Y. Liu, *Ph.D. thesis*. Université Aix-Marseille, to appear in (2013).

[33] L. Sainsaulieu, Contribution à la modélisation mathématique et numérique des écoulements diphasiques constitués d’un nuage de particules dans un écoulement de gaz. *Thèse d’habilitation à diriger des recherches*. Université Paris VI (1995).

[34] K. Saleh, Analyse et Simulation Numérique par Relaxation d’Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes. *Ph.D. thesis*. Université Pierre et Marie Curie, Paris VI (2012).

[35] Saurel, R. and Abgrall, R., A multiphase godunov method for compressible multifluid and multiphase flows. *J. Comput. Phys.* 150 (1999) 425–467.

[36] Schwendeman, D.W., Wahle, C.W. and Kapila, A.K., The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. *J. Comput. Phys.* 212 (2006) 490–526.

[37] Thanh, M.D., Kröner, D. and Chalons, C., A robust numerical method for approximating solutions of a model of two-phase flows and its properties. *Appl. Math. Comput.* 219 (2012) 320–344.

[38] Thanh, M.D., Kröner, D. and Nam, N.T., Numerical approximation for a Baer–Nunziato model of two-phase flows. *Appl. Numer. Math.* 61 (2011) 702–721.

[39] Tokareva, S.A. and Toro, E.F., HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. *J. Comput. Phys.* 229 (2010) 3573–3604.

[42] Yong, W-A., Entropy and global existence for hyperbolic balance laws. *Arch. Rational Mech. Anal.* 172 (2004) 247–266.