Skip to main content Accessibility help

On uniqueness in electromagnetic scattering from biperiodic structures

  • Armin Lechleiter (a1) and Dinh-Liem Nguyen (a2)


Consider time-harmonic electromagnetic wave scattering from a biperiodic dielectric structure mounted on a perfectly conducting plate in three dimensions. Given that uniqueness of solution holds, existence of solution follows from a well-known Fredholm framework for the variational formulation of the problem in a suitable Sobolev space. In this paper, we derive a Rellich identity for a solution to this variational problem under suitable smoothness conditions on the material parameter. Under additional non-trapping assumptions on the material parameter, this identity allows us to establish uniqueness of solution for all positive wave numbers.



Hide All
[1] T. Abboud, Electromagnetic waves in periodic media, in Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, Newark, DE. SIAM, Philadelphia (1993) 1–9.
[2] Alber, H., A quasi-periodic boundary value problem for the laplacian and the continuation of its resolvent. Proc. Royal Soc. Edinburgh 82 (1979) 251272.
[3] T. Arens, Scattering by biperiodic layered media: The integral equation approach.Habilitation Thesis, Universität Karlsruhe (2010).
[4] Bao, G., Variational approximation of Maxwell’s equations in biperiodic structures. SIAM J. Appl. Math. 57 (1997) 364381.
[5] G. Bao, L. Cowsar and W. Masters, Mathematical modeling in optical science. SIAM Frontiers Appl. Math. SIAM, Philadelphia (2001).
[6] Bao, G. and Dobson, D.C., On the scattering by a biperiodic structure. Proc. Amer. Math. Soc. 128 (2000) 27152723.
[7] Bonnet-Bendhia, A.-S. and Starling, F., Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem. Math. Methods Appl. Sci. 17 (1994) 305338.
[8] Chandler-Wilde, S.N. and Monk, P., Existence, uniqueness, and variational methods for scattering by unbounded rough surfaces. SIAM. J. Math. Anal. 37 (2005) 598618.
[9] M. Costabel, M. Dauge and S. Nicaise, Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I: Smooth domains.
[10] Dobson, D. and Friedman, A., The time-harmonic Maxwell’s equations in a doubly periodic structure. J. Math. Anal. Appl. 166 (1992) 507528.
[11] Dobson, D.C., A variational method for electromagnetic diffraction in biperiodic structures. Math. Model. Numer. Anal. 28 (1994) 419439.
[12] Haddar, H. and Lechleiter, A., Electromagnetic wave scattering from rough penetrable layers. SIAM J. Math. Anal. 43 (2011) 24182433.
[13] W. McLean, Strongly Elliptic Systems and Boundary Integral Operators. Cambridge University Press, Cambridge, UK (2000).
[14] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford Science Publications, Oxford (2003).
[15] Rellich, F., Darstellung der Eigenwerte von Δu + λu = 0 durch ein Randintegral. Math. Zeitschrift 46 (1940) 635636. Doi: 10.1007/BF01181459.
[16] Schmidt, G., On the diffraction by biperiodic anisotropic structures. Appl. Anal. 82 (2003) 7592.
[17] Wilcox, C., Scattering Theory for Diffraction Gratings. Appl. Math. Sci. Springer-Verlag 46 (1984).


On uniqueness in electromagnetic scattering from biperiodic structures

  • Armin Lechleiter (a1) and Dinh-Liem Nguyen (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed