Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T14:09:36.643Z Has data issue: false hasContentIssue false

On the Mathematical Analysis and Optimization of Chemical Vapor Infiltration in Materials Science

Published online by Cambridge University Press:  15 April 2002

Adi Ditkowski
Affiliation:
Division of Applied Mathematics, Brown University Providence, RI 02912, USA. e-mail: dig@cfm.brown.edu
David Gottlieb
Affiliation:
Division of Engineering, Brown University Providence, RI 02912, USA.
Brian W. Sheldon
Affiliation:
Division of Engineering, Brown University Providence, RI 02912, USA.
Get access

Abstract

In this paper we present an analysis of the partial differential equations thatdescribe the Chemical Vapor Infiltration (CVI) processes. The mathematical modelrequires at least two partial differential equations, one describing thegas phase and one corresponding to the solid phase.A key difficulty in the process is the long processing times that are typicallyrequired. We address here the issue of optimization and show that we can chooseappropriate pressure and temperature to minimize these processing times.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fitzer, E. and Gadow, R., Am. Ceram. Soc. Bull 65 (1986) 326-355.
Gupte, S.M. and Tsamopoulos, J.A., J. Electrochem. Soc. 136 (1989) 555-561. CrossRef
R. Aris, The Mathematical Theory of the Diffusion and Reaction in Permeable Catalysts, Oxford University Press, London (1975).
A. Ditkowski, D. Gottlieb and B.W. Sheldon, Optimization of Chemical Vapor Infiltration with Simultaneous Powder Formation. J. Mater. Res. (submitted).
H.-C. Chang, Minimizing Infiltration Time during Isothermal Chemical Vapor Infiltration, Ph.D. thesis, Brown University (1995).
F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York (1979).
E.A. Mason and A.P. Malinauskas, Gas Transport in Porous Media: The Dusty-Gas Model, Elsevier Science Publisher (1983).
B.W. Sheldon and H.-C. Chang, in Ceramic Transactions, Vol. 42, B.W. Sheldon and S.C. Danforth Eds (American Ceramic Society) (1994) 81-93.
Chang, H.-C., Morse, T.F. and Sheldon, B.W., J. Mater. Proc. Manuf. Sci. 2 (1994) 437-454.
Ofori, J.Y. and Sotirchos, S.V., AIChE Journal 42 (1996) 2828. CrossRef
Chang, H.-C., Morse, T.F. and Sheldon, B.W., J. Am. Ceram. Soc. 7 (1997) 1805-1811.
Chang, H.-C., Gottlieb, D., Marion, M. and Sheldon, B.W., J. of Scientific Computing 13 (1998) 303-321. CrossRef
Loll, P., Delhaes, P., Pacault, A. and Pierre, A., Carbon 13 (1975) 159.
P. Delhaes, in Electrochemical Society Proceedings 97-25, M.D. Allendorf and C. Bernard Eds (Electrochemical Society) (1997) 486-495.
T.M. Besmann, Oak Ridge National Laboratory, unpublished results (1998).
S. Bammidipati, G.D. Stewart, G.R. Elliott Jr, S.A. Gokoglu and M.J. Purdy, AIChE Journal 42, No. 11, (1996) 3123-3132. CrossRef
T.M. Besmann, J.W. Klett and T.D. Burchell, in MRS Symposium Proceedings (Materials Research Society, Pittsburgh, 1998) 365-370.