Skip to main content Accessibility help
×
Home

On the discretization in time of parabolic stochastic partial differential equations

  • Jacques Printems (a1)

Abstract

We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion of order in probability and generalize in that context the results of the globally Lipschitz case.

Copyright

References

Hide All
[1] Bensoussan, A. and Temam, R., Équations stochastiques du type Navier-Stoke. J. Funct. Anal. 13 (1973) 195-222.
[2] Bramble, J.H., Schatz, A.H., Thomée, V. and Wahlbin, L.B., Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations. SIAM J. Numer. Anal. 14 (1977) 218-241.
[3] C. Cardon-Weber, Autour d'équations aux dérivées partielles stochastiques à dérives non-Lipschitziennes. Thèse, Université Paris VI, Paris (2000).
[4] Crouzeix, M. and Thomée, V., On the discretization in time of semilinear parabolic equations with nonsmooth initial data. Math. Comput. 49 (1987) 359-377.
[5] G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation. Nonlinear Anal., Theory Methods. Appl. 26 (1996) 241-263.
[6] Da Prato, G., Debussche, A. and Temam, R., Stochastic Burgers' equation. Nonlinear Differ. Equ. Appl. 1 (1994) 389-402.
[7] Da Prato, G. and Gatarek, D., Stochastic Burgers equation with correlated noise. Stochastics Stochastics Rep. 52 (1995) 29-41.
[8] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, in Encyclopedia of Mathematics and its Application. Cambridge University Press, Cambridge (1992).
[9] Flandoli, F. and Gatarek, D., Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 102 (1995) 367-391.
[10] Gyöngy, I., Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal. 9 (1998) 1-25.
[11] Gyöngy, I., Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11 (1999) 1-37.
[12] Gyöngy, I. and Nualart, D., Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise. Potential Anal. 7 (1997) 725-757.
[13] Gyöngy, I., Existence and uniqueness results for semilinear stochastic partial differential equations. Stoch. Process Appl. 73 (1998) 271-299.
[14] Johnson, C., Larsson, S., Thomée, V. and Wahlbin, L.B., Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data. Math. Comput. 49 (1987) 331-357.
[15] P.E. Kloeden and E. Platten, Numerical solution of stochastic differential equations, in Applications of Mathematics 23, Springer-Verlag, Berlin, Heidelberg, New York (1992).
[16] Krylov, N. and Rozovski, B.L., Stochastic Evolution equations. J. Sov. Math. 16 (1981) 1233-1277.
[17] Le Roux, M.-N., Semidiscretization in Time for Parabolic Problems. Math. Comput. 33 (1979) 919-931.
[18] Milstein, G.N., Approximate integration of stochastic differential equations. Theor. Prob. Appl. 19 (1974) 557-562. Milstein, G.N., Weak approximation of solutions of systems of stochastic differential equations. Theor. Prob. Appl. 30 (1985) 750-766.
[19] E. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones. Étude de solutions fortes de type Ito. Thèse, Université Paris XI, Orsay (1975).
[20] B.L. Rozozski, Stochastic evolution equations. Linear theory and application to nonlinear filtering. Kluwer, Dordrecht, The Netherlands (1990).
[21] Shardlow, T., Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optimization 20 (1999) 121-145.
[22] D. Talay, Efficient numerical schemes for the approximation of expectation of functionals of the solutions of an stochastic differential equation and applications, in Lecture Notes in Control and Information Science 61, Springer, London, (1984) 294-313.
[23] Talay, D., Discrétisation d'une équation différentielle stochastique et calcul approché d'espérance de fonctionnelles de la solution. RAIRO Modél. Math. Anal. Numér. 20 (1986) 141-179.
[24] M. Viot, Solutions faibles aux équations aux dérivées partielles stochastiques non linéaires. Thèse, Université Pierre et Marie Curie, Paris (1976).
[25] J. B. Walsh, An introduction to stochastic partial differential equations, in Lectures Notes in Mathematics 1180 (1986) 265-437.

Keywords

Related content

Powered by UNSILO

On the discretization in time of parabolic stochastic partial differential equations

  • Jacques Printems (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.