Skip to main content Accessibility help
×
Home

A numerical study on Neumann-Neumann methods for hp approximations on geometrically refined boundary layer meshes II. Three-dimensional problems

  • Andrea Toselli (a1) and Xavier Vasseur (a1)

Abstract

In this paper, we present extensive numerical tests showing the performance and robustness of a Balancing Neumann-Neumann method for the solution of algebraic linear systems arising from hp finite element approximations of scalar elliptic problems on geometrically refined boundary layer meshes in three dimensions. The numerical results are in good agreement with the theoretical bound for the condition number of the preconditioned operator derived in [Toselli and Vasseur, IMA J. Numer. Anal. 24 (2004) 123–156]. They confirm that the condition numbers are independent of the aspect ratio of the mesh and of potentially large jumps of the coefficients. Good results are also obtained for certain singularly perturbed problems. The condition numbers only grow polylogarithmically with the polynomial degree, as in the case of p approximations on shape-regular meshes [Pavarino, RAIRO: Modél. Math. Anal. Numér. 31 (1997) 471–493]. This paper follows [Toselli and Vasseur, Comput. Methods Appl. Mech. Engrg. 192 (2003) 4551–4579] on two dimensional problems.

Copyright

References

Hide All
[1] Achdou, Y., Le Tallec, P., Nataf, F. and Vidrascu, M., A domain decomposition preconditioner for an advection-diffusion problem. Comput. Methods Appl Mech. Engrg. 184 (2000) 145170.
[2] Ainsworth, M., A preconditioner based on domain decomposition for hp–FE approximation on quasi–uniform meshes. SIAM J. Numer. Anal. 33 (1996) 13581376.
[3] Andersson, B., Falk, U., Babuška, I. and von Petersdorff, T., Reliable stress and fracture mechanics analysis of complex aircraft components using a hp–version FEM. Int. J. Numer. Meth. Eng. 38 (1995) 21352163.
[4] O. Axelsson, Iterative Solution Methods. Cambridge University Press (1994).
[5] Babuška, I. and Guo, B., Approximation properties of the hp–version of the finite element method. Comput. Methods Appl. Mech. Engrg. 133 (1996) 319346.
[6] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edition. SIAM, Philadelphia, PA (1994).
[7] Benzi, M., Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182 (2002) 418477.
[8] Benzi, M. and Tuma, M., A parallel solver for large-scale Markov chains. Appl. Numer. Math. 41 (2002) 135153.
[9] C. Bernardi and Y. Maday, Spectral methods. In Handbook of Numerical Analysis, North-Holland, Amsterdam Vol. V, Part 2 (1997) 209–485.
[10] Beuchler, S., Multigrid solver for the inner problem in domain decomposition methods for p-fem. SIAM J. Numer. Anal. 40 (2002) 928944.
[11] A. Björck, Numerical methods for least-squares problems. SIAM (1996).
[12] Bridson, R. and Tang, W.-P., Refining an approximate inverse. J. Comput. Appl. Math. 123 (2000) 293306.
[13] Brown, P. and Walker, H., GMRES on (nearly) singular systems. SIAM J. Matrix Anal. Appl. 18 (1997) 3751.
[14] Cecot, W., Rachowicz, W. and Demkowicz, L., An hp-adaptive finite element method for electromagnetics. III. a three-dimensional infinite element for Maxwell's equations. Internat. J. Numer. Methods Engrg. 57 (2003) 899921.
[15] Chow, E., A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM J. Sci. Comput. 21 (2000) 18041822.
[16] Dryja, M. and Widlund, O.B., Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems. Comm. Pure Appl. Math. 48 (1995) 121155.
[17] Dryja, M., Sarkis, M.V. and Widlund, O.B., Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72 (1996) 313348.
[18] C. Farhat and F.-X. Roux, Implicit parallel processing in structural mechanics, in Computational Mechanics Advances, J. Tinsley Oden Ed. North-Holland 2 (1994) 1–124.
[19] Farhat, C. and Roux, F.-X., A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Meth. Engng. 32 (1991) 12051227.
[20] Fokkema, D.R., Sleijpen, G.L.G. and Van der Vorst, H.A., Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20 (1998) 94125.
[21] Frauenfelder, P. and Lage, C., An object oriented software package for partial differential equations. ESAIM: M2AN 36 (2002) 937951.
[22] R. Geus, The Jacobi-Davidson algorithm for solving large sparse symmetric eigenvalue problems with application to the design of accelerator cavities. Ph.D. thesis, ETH, Zürich, Institut für Wissenschaftliches Rechnen (2002).
[23] G. Golub and C. Van Loan, Matrix Computations. The John Hopkins University Press (1996). Third edition.
[24] Golub, G. and Inexact, Q. Ye preconditioned conjugate gradient method with inner-outer iterations. SIAM J. Sci. Comput. 21 (1999) 13051320.
[25] Grote, M. and Huckle, T., Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18 (1997) 838853.
[26] Gui, W.Z. and Babuška, I., The h-, p- and hp-version of the Finite Element Method in one dimension, I: The error analysis of the p-version, II: The error analysis of the h- and hp-version, III: The adaptive hp-version. Numer. Math. 49 (1986) 577683.
[27] Guo, B. and Cao, W., Additive Schwarz methods for the hp version of the finite element method in two dimensions. SIAM J. Scientific Comput. 18 (1997) 12671288.
[28] R. Henderson, Dynamic refinement algorithms for spectral element methods. Comput. Methods Appl. Mech. Engrg. 175 (1999) 395–411.
[29] Ipsen, I.C.F. and Meyer, C.D., The idea behind Krylov methods. Amer. Math. Monthly 105 (1998) 889899.
[30] G.E. Karniadakis and S. Sherwin, Spectral/hp Element Methods for CFD. Oxford University Press (1999).
[31] Korneev, V., Flaherty, J.E., Oden, J.T. and Fish, J., Additive Schwarz algorithms for solving hp-version finite element systems on triangular meshes. Appl. Numer. Math 43 (2002) 399421.
[32] Korneev, V., Langer, U. and Xanthis, L.S., On fast domain decomposition solving procedures for hp-discretizations of 3d elliptic problems. Comput. Methods Appl. Math. 3 (2003) 536559.
[33] Le Tallec, P. and Patra, A., Non–overlapping domain decomposition methods for adaptive hp approximations of the Stokes problem with discontinuous pressure fields. Comput. Methods Appl. Mech. Engrg. 145 (1997) 361379.
[34] J.W. Lottes and P.F. Fischer, Hybrid Multigrid/Schwarz algorithms for the spectral element method. Technical report, Mathematics and Computer Science Division, Argonne National Laboratory (January 2003).
[35] Mandel, J. and Brezina, M., Balancing domain decomposition for problems with large jumps in coefficients. Math. Comp. 65 (1996) 13871401.
[36] Melenk, J.M. and Schwab, C., hp–FEM for reaction–diffusion equations. I: Robust exponential convergence. SIAM J. Numer. Anal. 35 (1998) 15201557.
[37] M. Melenk, hp-finite element methods for singular perturbations. Springer Verlag. Lect. Notes Math. 1796 (2002).
[38] P. Monk, Finite element methods for Maxwell's equations. Numerical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, New York, 2003.
[39] Nicolaides, R., Deflation of conjugate gradients with application to boundary value problems. SIAM J. Numer. Anal. 24 (1987) 35536.
[40] Oden, J.T., Patra, A. and Feng, Y., Parallel domain decomposition solver for adaptive hp finite element methods. SIAM J. Numer. Anal. 34 (1997) 20902118.
[41] Pavarino, L.F., Neumann-Neumann algorithms for spectral elements in three dimensions. RAIRO: Modél. Math. Anal. Numér. 31 (1997) 471493.
[42] Pavarino, L.F. and Widlund, O.B., Balancing Neumann-Neumann algorithms for incompressible Navier-Stokes equations. Commun. Pure Appl. Math. 55 (2002) 302335.
[43] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin (1994).
[44] J. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, S. Mc Cormick Ed. SIAM Philadelphia (1987) 73–130.
[45] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14 (1993) 461469.
[46] Saad, Y. and Schultz, M., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear system. SIAM J. Sci. Statist. Comput. 7 (1986) 856869.
[47] Saad, Y. and Suchomel, B., Arms: an algebraic recursive multilevel solver for general sparse linear systems. Numer. Linear Algebra Appl. 9 (2002) 359378.
[48] M.V. Sarkis, Schwarz Preconditioners for Elliptic Problems with Discontinuous Coefficients Using Conforming and Non-Conforming Elements. Ph.D. thesis, Courant Institute, New York University, September (1994). TR671, Department of Computer Science, New York University, URL: file://cs.nyu.edu/pub/tech-reports/tr671.ps.Z.
[49] Schötzau, D. and Schwab, C., Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38 (2000) 837875.
[50] C. Schwab, p– and hp– Finite Element Methods. Oxford Science Publications (1998).
[51] Schwab, C. and Suri, M., The p and hp version of the finite element method for problems with boundary layers. Math. Comp. 65 (1996) 14031429.
[52] Schwab, C., Suri, M. and Xenophontos, C.A., The hp–FEM for problems in mechanics with boundary layers. Comput. Methods Appl. Mech. Engrg. 157 (1998) 311333.
[53] B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press (1996).
[54] P. Solin, K. Segeth and I. Dolezel, Higher-order finite element methods. Studies in Advanced Mathematics, Chapman and Hall, 2004.
[55] A. Toselli, FETI domain decomposition methods for scalar advection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 190 (2001) 5759–5776.
[56] A. Toselli and X. Vasseur, Domain decomposition methods of Neumann-Neumann type for hp-approximations on geometrically refined boundary layer meshes in two dimensions. Technical Report 02–15, Seminar für Angewandte Mathematik, ETH, Zürich (September 2002). Submitted to Numerische Mathematik.
[57] A. Toselli and X. Vasseur, A numerical study on Neumann-Neumann and FETI methods for hp-approximations on geometrically refined boundary layer meshes in two dimensions. Comput. Methods Appl. Mech. Engrg. 192 (2003) 4551–4579.
[58] Toselli, A. and Vasseur, X., Domain decomposition methods of Neumann-Neumann type for hp-approximations on boundary layer meshes in three dimensions. IMA J. Numer. Anal. 24 (2004) 123156.
[59] A. Toselli and O. Widlund, Domain Decomposition methods – Algorithms and Theory. Springer Series on Computational Mathematics, Springer 34 (2004).
[60] U. Trottenberg, C. Oosterlee and A. Schüller, Multigrid. Academic Press, London (2000). Guest contribution by Klaus Stüben: “An Introduction to Algebraic Multigrid”.

Keywords

Related content

Powered by UNSILO

A numerical study on Neumann-Neumann methods for hp approximations on geometrically refined boundary layer meshes II. Three-dimensional problems

  • Andrea Toselli (a1) and Xavier Vasseur (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.