[1] V.S. Afraimovich, M.K. Muezzinoglu and M.I. Rabinovich, Metastability and Transients in Brain Dynamics: Problems and Rigorous Results, in *Long-range Interactions, Stochasticity and Fractional Dynamics; Nonlinear Physical Science*, edited by Albert C.J. Luo and Valentin Afraimovich. Springer-Verlag (2010) 133–175.

[2] Allen, E., Burns, J.A., Gilliam, D.S., Hill, J. and Shubov, V.I., The impact of finite precision arithmetic and sensitivity on the numerical solution of partial differential equations. *Math. Comput. Model.* 35 (2002) 1165–1195.

[3] E. Allen, J.A. Burns and D.S. Gilliam, On the use of numerical methods for analysis and control of nonlinear convective systems, in *Proc. of 47th IEEE Conference on Decision and Control* (2008) 197–202.

[4] J.A. Atwell and B.B. King, Stabilized Finite Element Methods and Feedback Control for Burgers’ Equation, in *Proc. of the 2000 American Control Conference* (2000) 2745–2749.

[5] Bailey, D.H. and Borwein, J.M., Exploratory Experimentation and Computation, *Notices AMS* 58 (2011) 1410–1419.

[6] Balogh, A., Gilliam, D.S. and Shubov, V.I., Stationary solutions for a boundary controlled Burgers’ equation. *Math. Comput. Model.* 33 (2001) 21–37.

[7] Beck, M. and Wayne, C.E., Using Global Invariant Manifolds to Understand Metastability in the Burgers Equation With Small Viscosity. *SIAM Review* 53 (2011) 129–153 [Published originally SIAM *J. Appl. Dyn. Syst.* **8** (2009) 1043–1065].

[8] T.R. Bewley, P. Moin and R. Temam, Control of Turbulent Flows, in *Systems Modelling and Optimization*, Chapman and Hall CRC, Boca Raton, FL (1999) 3–11.

[9] Borggaard, J.T. and Burns, J.A., A PDE Sensitivity Equation Method for Optimal Aerodynamic Design. *J. Comput. Phys.* 136 (1997) 366–384.

[10] Burns, J., Balogh, A., Gilliam, D. and Shubov, V., Numerical stationary solutions for a viscous Burgers’ equation. *J. Math. Syst. Estim. Control* 8 (1998) 1–16.

[11] Burns, J.A. and Kang, S., A control problem for Burgers’ equation with bounded input/output. *Nonlinear Dyn.* 2 (1991) 235–262.

[12] J.A. Burns and S. Kang, A Stabilization problem for Burgers’ equation with unbounded control and observation, in Estimation and Control of Distributed Parameter Systems. *Int. Ser. Numer. Math.* vol. 100, edited by W. Desch, F. Rappel, K. Kunisch. Springer-Verlag (1991) 51–72.

[13] J.A. Burns and H. Marrekchi, Optimal fixed-finite-dimensional compensator for Burgers’ Equation with unbounded input/output operators. ICASE Report No. 93-19. *Institute for Comput. Appl. Sci. Engrg.*, Hampton, VA. (1993).

[14] J.A. Burns and J.R. Singler, On the Long Time Behavior of Approximating Dynamical Systems, in *Distributed Parameter Control*, edited by F. Kappel, K. Kunisch and W. Schappacher. Springer-Verlag (2001) 73–86.

[15] C.I. Byrnes and D.S. Gilliam, Boundary control and stabilization for a viscous Burgers’ equation. *Computation and Control, Progress in Systems Control Theory,* vol. 15. Birkhäuser Boston, Boston, MA (1993) 105–120.

[16] C.I. Byrnes, D.S. Gilliam and V.I. Shubov, Convergence of trajectories for a controlled viscous Burgers’ equation, Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena. *Int. Ser. Numer. Math.*, vol. 118, edited by W. Desch, F. Rappel, K. Kunisch. Birkhäuser, Basel (1994) 61–77.

[17] C.I. Byrnes, D. Gilliam, V. Shubov and Z. Xu, Steady state response to Burgers’ equation with varying viscosity, in Progress in Systems and Control: Computation and Control IV, edited by K. L.Bowers and J. Lund. Birkhäuser, Basel (1995) 75–98.

[18] Byrnes, C.I., Gilliam, D.S. and Shubov, V.I., High gain limits of trajectories and attractors for a boundary controlled viscous Burgers’ equation. *J. Math. Syst. Estim. Control* 6 (1996) 40.

[19] Byrnes, C.I., Balogh, A., Gilliam, D.S. and Shubov, V.I., Numerical stationary solutions for a viscous Burgers’ equation. *J. Math. Syst. Estim. Control* 8 (1998) 16 (electronic).

[20] Byrnes, C.I., Gilliam, D.S. and Shubov, V.I., On the Global Dynamics of a Controlled Viscous Burgers’ Equation. *J. Dyn. Control Syst.* 4 (1998) 457–519.

[21] Byrnes, C.I., Gilliam, D.S. and Shubov, V.I., Boundary Control, Stabilization and Zero-Pole Dynamics for a Nonlinear Distributed Parameter System. *Int. J. Robust Nonlinear Control* 9 (1999) 737–768.

[22] C. Cao and E. Titi, Asymptotic Behavior of Viscous Burgers’ Equations with Neumann Boundary Conditions, Third Palestinian Mathematics Conference, Bethlehem University, West Bank. *Mathematics and Mathematics Education*, edited by S. Elaydi, E. S. Titi, M. Saleh, S. K. Jain and R. Abu Saris. World Scientific (2002) 1–19.

[23] Carpenter, M.H., Nordström, J. and Gottlieb, D., Revisiting and extending interface penalties for multi-domain summation-by-parts operators. *J. Sci. Comput.* 45 (2010) 118–150.

[24] Carr, J. and Pego, J.L., Metastable patterns in solutions of *u* _{t} = *ϵ* ^{2}*u* _{xx} − *f*(*u*). *Comm. Pure Appl. Math.* 42 (1989) 523–576.

[25] Carr, J., Duncan, D.B. and Walshaw, C.H., Numerical approximation of a metastable system. *IMA J. Numer. Anal.* 15 (1995) 505–521.

[26] C.A.J. Fletcher, Burgers’ equation: A model for all reasons, in *Numerical Solutions of J. Partial Differ. Eqns.*, edited by J. Noye. North-Holland Publ. Co. Amsterdam (1982) 139–225.

[27] A.V. Fursikov and R. Rannacher, Optimal Neumann Control for the 2D Steady-State Navier-Stokes equations, in *New Directions in Math. Fluid Mech.* The Alexander. *V. Kazhikhov Memorial Volume*. *Advances in Mathematical Fluid Mechanics*, Birkhauser, Berlin (2009) 193–222.

[28] Fusco, G. G. and Hale, J. K., *Slow-motion manifolds, dormant instability, and singular perturbations*. *J. Dyn. Differ. Eqns.* 1 (1989) 75–94.

[29] Gallay, T. and Wayne, C.E., Invariant manifolds and the long-time asymptotics of the navier-stokes and vorticity equations on R^{2}. *Arch. Rational Mech. Anal.* 163 (2002) 209–258.

[30] Gallay, T. and Wayne, C.E., Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. *Commun. Math. Phys.* 255 (2005) 97–129.

[31] Garbey, M. and Kaper, H.G., Asymptotic-Numerical Study of Supersensitivity for Generalized Burgers’ Equation. *SIAM J. Sci. Comput.* 22 (2000) 368–385.

[32] Gottlieb, S., Gottlieb, D. and Shu, C.-W., Recovering High-Order Accuracy in WENO Computations of Steady-State Hyperbolic Systems. *J. Sci. Comput.* 28 (2006) 307–318.

[33] Gunzburger, M., Hou, L. and Svobodny, T., Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls. *Math. Comput.* 57 (1991) 123–151.

[34] Gunzburger, M.D., Lee, H.C. and Lee, J., Error estimates of stochastic optimal Neumann boundary control problems. *SIAM J. Numer. Anal.* 49 (2011) 1532–1552.

[35] J.S. Hesthaven, S. Gottlieb and D. Gottlieb, *Spectral Methods for Time Dependent Problems*, Cambridge Monographs on Applied and Computational Mathematics, vol. 21. Cambridge University Press (2006).

[36] IEEE Computer Society, IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985 (1985).

[37] Kanevsky, A., Carpenter, M.H., Gottlieb, D. and Hesthaven, J. S., Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. *J. Comput. Phys.* 225 (2007) 1753–1781.

[38] R. Kannan and Z.J. Wang, A high order spectral volume solution to the Burgers’ equation using the Hopf–Cole transformation. *Int. J. Numer. Meth. Fluids* (2011). Available on wileyonlinelibrary.com. DOI: 10.1002/fld.2612. [39] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Ural’ceva, *Linear and Quasilinear Equations of Parabolic Type*, Translations of the AMS, vol. 23 (1968).

[40] J.G.L. Laforgue and R.E. O’Malley, *Supersensitive Boundary Value Problems*, *Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters*, edited by H.G. Kaper and M. Garbey. Kluwer Publishers (1993) 215–224.

[41] Ly, H.V., Mease, K.D. and Titi, E.S., Distributed and boundary control of the viscous Burgers’ equation. *Numer. Funct. Anal. Optim.* 18 (1997) 143–188.

[42] H. Marrekchi, *Dynamic Compensators for a Nonlinear Conservation Law*, Ph.D. Thesis, Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061 (1993).

[43] V.Q. Nguyen, *A Numerical Study of Burgers’ Equation With Robin Boundary Conditions*, M.S. Thesis. Department of Mathematics, Polytechnic Institute and State University, Blacksburg, VA, 24061 (2001).

[44] Pettersson, P., Nordström, J. and Laccarino, G., Boundary procedures for the time-dependent Burgers’ equation under uncertainty. *Acta Math. Sci.* 30 (2010) 539–550.

[45] Pinto, J.T., Slow motion manifolds far from the attractor in multistable reaction-diffusion equations. *J. Differ. Eqns.* 174 (2001) 101–132.

[46] S.M. Pugh, *Finite element approximations of Burgers’ Equation*, M.S. Thesis. Departmant of Mathematics, Polytechnic Institute and State University, Blacksburg, VA, 24061 (1995).

[47] G.R. Sell and Y. You, *Dynamics of Evolutionary Equations*, vol. 143. Springer-Verlag (2002).

[48] Teng, Z.-H., Exact boundary conditions for the initial value problem of convex conservation laws. *J. Comput. Phys.* 229 (2010) 3792–3801.

[49] Ward, M.J. and Reyna, L.G., Internal layers, small eigenvalues, and the sensitivity of metastable motion. *SIAM J. Appl. Math.* 55 (1995) 425–445.

[50] Zelenjak, T.I., Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, *Differentsial’nye Uravneniya* 4 (1968) 34D45.

[51] T.I. Zelenyak, M.M. Lavrentiev Jr. and M.P. Vishnevskii, *Qualitative Theory of Parabolic Equations, Part 1*, VSP, Utrecht, The Netherlands (1997).