Skip to main content Accessibility help
×
Home

Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena: local study and upscaling process

  • Serge Blancher (a1), René Creff (a1), Gérard Gagneux (a2), Bruno Lacabanne (a2), François Montel (a3) and David Trujillo (a2)...

Abstract

Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a "mixed finite element"method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to the studied equations in order to obtain an efficient modelling of Soret effect and adsorption in a porous medium at a macroscopic scale.

Copyright

References

Hide All
[1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518.
[2] G. Allaire, Homogénéisation des équations de Stokes et de Navier-Stokes. Thèse de doctorat de l'Université Paris VI (1989).
[3] G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical of Flow through Porous Media, A. bourgeat et al. Eds., World scientific Pub., Singapore (1995).
[4] S.N. Antontsev and A.V. Domansky, Uniqueness generalizated solutions of degenerate problem two phase filtration. Numerical methods mechanics in continuum medium, Collection Sciences Research, Sbornik 15 (1984) 15-28 (in Russian).
[5] S.N. Antontsev, A.M. Meirmanov and V.V. Yurinsky, Homogenization of Stokes-Type equations with variable viscosity. Siberian Adv. Math. 8 Allerton Press, New York (1998).
[6] P. Bia and M. Combarnous, Les méthodes thermiques de production des hydrocarbures. Chap. 1: Transfert de chaleur et de masse. Revue de l'Institut Français du Pétrole, mai-juin (1975) 359-395.
[7] H. Brezis, Analyse fonctionnelle, théorie et applications. Masson, Paris (1983).
[8] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. 9 Vols., Masson, Paris (1985).
[9] J.I. Díaz, Two problems in homogenization of porous media. Preprint, Université Complutense de Madrid, MA-UCM 1999-25, (1999).
[10] J.I. Díaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion. Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 11 (1998) 59-82.
[11] J.I. Díaz, G. Galiano and A. Jungel, On a quasilinear degenerated system arising in semiconductors theory. Part I: existence and uniqueness of solutions. Centrum voor Wiskunde en Informatica, Modelling, Analysis and Simulation. Report MAS-R9723, (1997).
[12] G. Duvaut and J.L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris (1972).
[13] G. Gagneux, Sur l'analyse de modèles de la filtration diphasique en milieu poreux, in Equations aux dérivées partielles et applications. Articles dédiés à J.L. Lions. Gauthier-Villars, Paris (1998) 527-540.
[14] G. Gagneux and M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière. Collection Mathématiques et Applications, Springer-Verlag, Heidelberg 22 (1996).
[15] U. Hornung, Homogenization and porous media. Interdisciplinary Appl. Math., No. 6, Springer, New York (1997).
[16] Hornung, U. and Jäger, W., Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differential Equations 92 (1991) 199-225.
[17] F. James, M. Sepulveda and P. Valentin, Modèle de thermodynamique statistique pour un isotherme d'équilibre diphasique multicomposant. Rapport de recherche du centre de mathématiques appliquées de l'École Polytechnique No. 223 (1990).
[18] J.L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968).
[19] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris (1968).
[20] F. Montel, Importance de la thermodiffusion en exploration et production pétrolières. Entropie No. 184/185 (1994) 86-93.
[21] Nicolaïdes, R.A., Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349-357.
[22] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical aspects of the finite element method, Lect. Notes Math. 606, Springer, Berlin (1977) 292-315.
[23] J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods. Handbook of numerical analysis, finite element methods, Vol. II, finite element methods (Part. 1), Ciarlet P-G., Lions J-L. Eds. North Holland, Amsterdam (1991) 523-639 .
[24] E. Sanchez-Palencia, Non-homogeneous media and vibration theory. Springer-Verlag, Berlin (1980).
[25] D. Serre, Systèmes de lois de conservation. Tome 1, Fondations. Diderot Éditeur, Arts et Sciences, Paris (1996) 66-68.
[26] J-M. Thomas, D. Trujillo, Mixed finite volume methods, Intermat. J. Numer. Methods Engrg. 46 (1999) 1351-1366.

Keywords

Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena: local study and upscaling process

  • Serge Blancher (a1), René Creff (a1), Gérard Gagneux (a2), Bruno Lacabanne (a2), François Montel (a3) and David Trujillo (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed