Skip to main content Accessibility help
×
Home

Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system

  • Konstantinos Chrysafinos (a1), Sotirios P. Filopoulos (a2) and Theodosios K. Papathanasiou (a2)

Abstract

Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear parabolic PDEs are examined. The schemes under consideration are discontinuous in time but conforming in space and of arbitrary order. Stability estimates are presented in the natural energy norms and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary order are derived, provided that the natural parabolic regularity is present. Various physical parameters appearing in the model are tracked and numerical examples are presented.

Copyright

References

Hide All
[1] Akrivis, G. and Crouzeix, M., Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73 (2004) 613635.
[2] Akrivis, G. and Makridakis, C., Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM : M2AN 38 (2004) 261289.
[3] Akrivis, G., Crouzeix, M. and Makridakis, C., Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67 (1998) 457477.
[4] Chiu, C. and Walkington, N.J., An ADI method for hysteric reaction-diffusion systems. SIAM J. Numer. Anal. 34 (1997) 11851206.
[5] Chrysafinos, K. and Walkington, N.J., Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349366.
[6] Chrysafinos, K. and Walkington, N.J., Lagrangian and moving mesh methods for the convection diffusion equation. ESAIM : M2AN 42 (2008) 2756.
[7] Chrysafinos, K. and Walkington, N.J., Discontinous Galerkin approximations of the Stokes and Navier–Stokes problem. Math. Comput. 79 (2010) 21352167.
[8] P.G. Ciarlet, The finite element method for elliptic problems. SIAM Classics Appl. Math. (2002).
[9] Delfour, M., Hager, W. and Trochu, F., Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36 (1981) 455473.
[10] Descombes, S and Ribot, M., Convergence of the Peaceman–Rachford approximation for reaction-diffusion systems. Numer. Math. 95 (2003) 503525.
[11] Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 4377.
[12] Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems. II. Optimal error estimates in L (L 2) and L (L ). SIAM J. Numer. Anal. 32 (1995) 706740.
[13] Ericksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems IV : Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 17291749.
[14] Eriksson, K., Johnson, C. and Thomée, V., Time discretization of parabolic problems by the discontinuous Galerkin method. ESAIM : M2AN 29 (1985) 611643.
[15] Estep, D. and Larsson, S., The discontinuous Galerkin method for semilinear parabolic equations. ESAIM : M2AN 27 (1993) 3554.
[16] D. Estep, M. Larson and R. Williams, Estimating the error of numerical solutions of systems of reaction-diffusion equations. Mem. Amer. Math. Soc. 146 (2000) viii+109.
[17] L. Evans, Partial Differential Equations. AMS, Providence, RI (1998).
[18] P. Fife, Mathematical aspects of reacting and diffusing systems. Lect. Notes Biomath. 28 (1978).
[19] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445466.
[20] Franzone, P., Deflhard, P., Erdmann, B., Lang, J. and Pavarino, L., Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28 (2006) 942962.
[21] Garvie, M.R. and Blowey, J.M., A reaction-diffusion system of λω type. Part II : Numerical analysis. Eur. J. Appl. Math. 16 (2005) 621646.
[22] Garvie, M.R. and Trenchea, C., Finite element approximation of spatially extended predator interactions with the Holling type II functional response. Numer. Math. 107 (2008) 641667.
[23] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes. Springer-Verlag, New York (1986).
[24] Gunzburger, M.D., Hou, L.S. and Zhu, W., Fully discrete finite element approximation of the forced Fisher equation. J. Math. Anal. Appl. 313 (2006) 419440.
[25] Hansen, E. and Ostermann, A., Dimension splitting for evolution equations. Numer. Math. 108 (2008) 557570.
[26] Hastings, S.P., Some mathematical models from neurobiology. Amer. Math. Monthly 82 (1975) 881895.
[27] W. Hundsdorfer and J. Verwer, Numerical solution for time-dependent advection-diffusion-reaction equations. Springer-Verlag, Berlin (2003).
[28] Jackson, D., Existence and regularity for the FitzHugh–Nagumo equations with inhomogeneous boundary conditions. Nonlinear Anal. Theory Methods Appl. 14 (1990) 201216.
[29] Jackson, D., Error estimates for the semidiscrete Galerkin approximations of the FitzHugh–Nagumo equations. Appl. Math. Comput. 50 (1992) 93114.
[30] Jamet, P., Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912928.
[31] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge (1987).
[32] P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical aspects of finite elements in partial differential equations, edited by C. de Boor. Academic Press, New York (1974) 89–123.
[33] Meidner, D. and Vexler, B., A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I : Problems without control constraints. SIAM J. Control. Optim. 47 (2008) 11501177.
[34] Nagaiah, C., Kunisch, K. and Plank, G., Numerical solution for optimal control problems of the reaction diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49 (2011) 149178.
[35] Nagumo, J.S., Arimoto, S. and Yoshizawa, S., An active pulse transmission line simulating nerve axon. Proc. IRE 50 (1962) 20612070.
[36] C.S. Peskin, Partial Differential Equations in Biology. Courant Institute of Mathematical Sciences, New York (1975).
[37] Schoenbek, M.E., Boundary value problems for the FitzHugh–Nagumo equations. J. Differ. Equ. 30 (1978) 119147.
[38] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. 68 (1997).
[39] Theodoropoulos, C., Qian, Y.-H. and Kevrekidis, I.G., “Coarse” stability and bifurcation analysis using time-steppers : a reaction-diffusion example. Proc. Natl. Acad. Sci. USA 97 (2000) 98409843.
[40] V. Thomée, Galerkin finite element methods for parabolic problems. Spinger-Verlag, Berlin (1997).
[41] Walkington, N.J., Compactness properties of CG and DG schemes. SIAM J. Numer. Anal. 47 (2010) 46804710.
[42] E. Zeidler, Nonlinear functional analysis and its applications, in II/B Nonlinear monotone operators. Springer-Verlag, New York (1990).

Keywords

Related content

Powered by UNSILO

Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system

  • Konstantinos Chrysafinos (a1), Sotirios P. Filopoulos (a2) and Theodosios K. Papathanasiou (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.