Skip to main content Accessibility help
×
Home

Error Control and Andaptivity for a Phase Relaxation Model

  • Zhiming Chen (a1), Ricardo H. Nochetto (a2) and Alfred Schmidt (a3)

Abstract

The phase relaxation model is a diffuse interface model with small parameter ε which consists of a parabolic PDE for temperature θ and an ODE with double obstacles for phase variable χ. To decouple the system a semi-explicit Euler method with variable step-size τ is used for time discretization, which requires the stability constraint τ ≤ ε. Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter h are further employed for space discretization. A posteriori error estimates are derived for both unknowns θ and χ, which exhibit the correct asymptotic order in terms of ε, h and τ. This result circumvents the use of duality, which does not even apply in this context. Several numerical experiments illustrate the reliability of the estimators and document the excellent performance of the ensuing adaptive method.

Copyright

References

Hide All
[1] Chen, Z. and Nochetto, R.H., Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548.
[2] Z. Chen, R.H. Nochetto and A. Schmidt, Adaptive finite element methods for diffuse interface models (in preparation).
[3] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
[4] Clément, Ph., Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84.
[5] Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77.
[6] Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749.
[7] Eriksson, K., Johnson, C. and Larsson, S., Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315-1325.
[8] P. Grisvard, Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985).
[9] Jiang, X. and Nochetto, R.H., Optimal error estimates for semidiscrete phase relaxation models. RAIRO Modél. Math. Anal. Numér. 31 (1997) 91-120.
[10] Jiang, X. and Nochetto, R.H., A P 1-P 1 finite element method for a phase relaxation model. I. Quasi uniform mesh. SIAM J. Numer. Anal. 35 (1998) 1176-1190.
[11] Jiang, X., Nochetto, R.H. and Verdi, C., A P 1-P 1 finite element method for a phase relaxation model. II. Adaptively refined meshes. SIAM J. Numér. Anal. 36 (1999) 974-999.
[12] Nochetto, R.H., Paolini, M. and Verdi, C., Continuous and semidiscrete traveling waves for a phase relaxation model. European J. Appl. Math. 5 (1994) 177-199.
[13] Nochetto, R.H., Savaré, G. and Verdi, C., Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Sér. I 326 (1998) 1437-1442.
[14] Nochetto, R.H., Savaré, G. and Verdi, C., A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 529-589.
[15] Nochetto, R.H., Schmidt, A. and Verdi, C., A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69 (2000) 1-24.
[16] Verdi, C. and Visintin, A., Numerical analysis of the multidimensional Stefan problem with supercooling and superheating. Boll. Un. Mat. Ital. B 7 (1987) 795-814.
[17] Verdi, C. and Visintin, A., Error estimates for a semi-explicit numerical scheme for Stefan-type problems. Numer. Math. 52 (1988) 165-185.
[18] Visintin, A., Stefan problem with phase relaxation. IMA J. Appl. Math. 34 (1985) 225-245.
[19] Visintin, A., Supercooling and superheating effects in phase transitions. IMA J. Appl. Math. 35 (1986) 233-256.

Keywords

Error Control and Andaptivity for a Phase Relaxation Model

  • Zhiming Chen (a1), Ricardo H. Nochetto (a2) and Alfred Schmidt (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed