Skip to main content Accessibility help
×
Home

Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system

  • Emmanuel Creusé (a1) and Serge Nicaise (a1)

Abstract

In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.

Copyright

References

Hide All
[1] P. Anselone, Collectively compact operator approximation theory. Prentice Hall (1971).
[2] Apel, T. and Nicaise, S., The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Method. Appl. Sci. 21 (1998) 519549.
[3] P. Arbenz and R. Geus, Eigenvalue solvers for electromagnetic fields in cavities, in High performance scientific and engineering computing, H.-J. Bungartz, F. Durst, and C. Zenger, Eds., Lect. Notes Comput. Sc., Springer, Berlin 8(1999).
[4] Arnold, D.G., Brezzi, F., Cockburn, B. and Marini, L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 17491779.
[5] Assous, F., Ciarlet, P. and Sonnendrücker, E., Characterization of the singular part of the solution of Maxwell's equations in a polyhedral domain. RAIRO Modél. Math. Anal. Numér. 32 (1998) 485499.
[6] Birman, M. and Solomyak, M., L 2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42 (1987) 7596.
[7] Boffi, D., Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229246.
[8] Boffi, D., Demkowicz, L. and Costabel, M., Discrete compactness for p and hp 2d edge finite elements. Math. Mod. Meth. Appl. S. 13 (2003) 16731687.
[9] D. Boffi, M. Costabel, M. Dauge and L. Demkowicz, Discrete compactness for the hp version of rectangular edge finite elements. ICES Report 04-29, University of Texas, Austin (2004).
[10] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer, New York (1991).
[11] F. Chatelin, Spectral approximation of linear operators. Academic Press, New York (1983).
[12] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).
[13] Costabel, M. and Dauge, M., Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221276.
[14] M. Dauge, Benchmark computations for Maxwell equations for the approximation of highly singular solutions. Technical report, University of Rennes 1. http://perso.univ-rennes1.fr/monique.dauge/core/index.html
[15] Demkowicz, L., Monk, P., Schwab, C. and Vardepetyan, L., Maxwell eigenvalues and discrete compactness in two dimensions. Comput. Math. Appl. 40 (2000) 589605.
[16] Hazard, C. and Lenoir, M., On the solution of time-harmonic scattering problems for Maxwell's equations. SIAM J. Math. Anal. 27 (1996) 15971630.
[17] Hesthaven, J. and Warburton, T., High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. T. Roy. Soc. A 362 (2004) 493524.
[18] Hiptmair, R., Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237339.
[19] Houston, P., Perugia, I., Schneebeli, D. and Schötzau, D., Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485518.
[20] Houston, P., Perugia, I. and Schötzau, D., Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22 (2005) 315346.
[21] Kikuchi, F., On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. U. Tokyo IA 36 (1989) 479490.
[22] Krizek, M. and Neittaanmaki, P., On the validity of Friedrichs' inequalities. Math. Scand. 54 (1984) 1726.
[23] R. Leis, Initial boundary value problems in Mathematical Physics. John Wiley, New York (1988).
[24] S. Lohrengel and S. Nicaise, A discontinuous Galerkin method on refined meshes for the 2d time-harmonic Maxwell equations in composite materials. Preprint Macs, University of Valenciennes, 2004. J. Comput. Appl. Math. (to appear).
[25] P. Monk, Finite element methods for Maxwell's equations. Numer. Math. Scientific Comp., Oxford Univ. Press, New York (2003).
[26] Monk, P. and Demkowicz, L., Discrete compactness and the approximation of Maxwell's equations in $\mathbb{R}^3$ . Math. Comp. 70 (2000) 507523.
[27] Osborn, J., Spectral approximation for compact operators. Math. Comp. 29 (1975) 712725.

Keywords

Related content

Powered by UNSILO

Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system

  • Emmanuel Creusé (a1) and Serge Nicaise (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.