Skip to main content Accessibility help
×
Home

Diffusion Limit of the Lorentz Model: Asymptotic Preserving Schemes

  • Christophe Buet (a1), Stéphane Cordier (a2), Brigitte Lucquin-Desreux (a3) and Simona Mancini (a3)

Abstract

This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization points, in order to reduce the cost of computation.

Copyright

References

Hide All
[1] Adams, M.L., Subcell balance methods for radiative transfer on arbitrary grids. Transport Theory Statist. Phys. 27 (1997) 385-431.
[2] R. Botchorishvili, B. Perthame and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources. Inria report RR-3891 (2000), http://www.inria.fr/RRRT/RR-3891.html
[3] Buet, C., Cordier, S. and Lucquin-Desreux, B., The grazing collision limit for the Boltzmann-Lorentz model. Asymptot. Anal. 25 (2001) 93-107.
[4] Caflisch, R.E., Jin, S. and Russo, G., Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34 (1997) 246-281.
[5] Chen, G.Q., Levermore, C.D. and Liu, T.P., Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47 (1994) 187-830.
[6] S. Cordier, B. Lucquin-Desreux and A. Sabry, Numerical approximation of the Vlasov-Fokker-Planck-Lorentz model. ESAIM: Procced. CEMRACS 1999 (2001), http://www.emath.fr/Maths/Proc/Vol.10
[7] P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Models Methods Appl. Sci. 2 (1992) 167-182.
[8] Degond, P. and Lucquin-Desreux, B., The asymptotics of collision operators for two species of particles of disparate masses. Math. Models Methods Appl. Sci. 6 (1996) 405-436.
[9] Desvillettes, L., On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Statist. Phys. 21 (1992) 259-276.
[10] Glimm, J., Marshall, G. and Plohr, B.J., A generalized Riemann problem for quasi one dimensional gas flows. Adv. in Appl. Math. 5 (1984) 1-30.
[11] E. Godlewski and P.A. Raviart, Numerical approximations of hyperbolic systems of conservation laws. Springer-Verlag, New York, Appl. Math. Sci. 118 (1996).
[12] Goldstein, S., On diffusion by discontinuous movements, and on the telegraph equation. Quart. J. Mech. Appl. Math. 4 (1951) 129-156.
[13] Golse, F., Jin, S. and Levermore, C.D., The convergence of numerical transfer schemes in diffusive regimes I: discrete-ordinate method. SIAM J. Numer. Anal. 36 (1999) 1333-1369.
[14] L. Gosse, A priori error estimate for a well-balanced scheme designed for inhomogeneous scalar conservation laws. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 467-472.
[15] L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11 (2001) 339-365.
[16] Gosse, L. and Leroux, A.Y., A well-balanced scheme designed for inhomogeneous scalar conservation laws. C. R. Acad. Sci. Paris Sér. I Math. I323 (1996) 543-546.
[17] Greenberg, J.M. and Leroux, A.Y., A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16.
[18] Hermeline, F., A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys 160 (2000) 481-499.
[19] F. Hermeline, Two coupled particle-finite volume methods using Delaunay-Voronoï meshes for the approximation of Vlasov-Poisson and Vlasov-Maxwell equations. J. Comput. Phys 106 (1993).
[20] Jin, S., Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441-454.
[21] Jin, S., Numerical integrations of systems of conservation laws of mixed type. SIAM J. Appl. Math. 55 (1995) 1536-1551.
[22] Jin, S. and Levermore, C.D., The discrete-ordinate method in diffusive regimes. Transport Theory Statist. Phys. 20 (1991) 413-439.
[23] Jin, S. and Levermore, C.D., Fully-discrete numerical transfer in diffusive regimes. Transport Theory Statist. Phys. 22 (1993) 739-791.
[24] S. Jin and C.D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 126 (1996) 449-467.
[25] S. Jin and L. Pareschi, Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes. J. Comput. Phys. 161 (2000) 312-330.
[26] Jin, S., Pareschi, L. and Toscani, G., Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35 (1998) 2405-2439.
[27] S. Jin, L. Pareschi and G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. (2000).
[28] S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. XLVIII (1995) 235-276.
[29] Klar, A., An asymptotic-induced scheme for non stationary transport equations in the diffusive limit. SIAM J. Numer. Anal 35 (1998) 1073-1094.
[30] Larsen, E.W., The asymptotic diffusion limit of discretized transport problems. Nuclear Sci. Eng. 112 (1992) 336-346.
[31] E.W. Larsen and J.E. Morel, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. II. J. Comput. Phys. 83 (1989) 212-236.
[32] E.W. Larsen, J.E. Morel and W.F. Miller Jr., Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys. 69 (1987) 283-324.
[33] LeVeque, R.J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998) 346-365.
[34] Lions, P.L., Perthame, B. and Souganidis, P.E., Existence of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49 (1996) 599-638.
[35] Lucquin-Desreux, B., Diffusion of electrons by multicharged ions. Math. Models Methods Appl. Sci. 10 (2000) 409-440.
[36] B. Lucquin-Desreux and S. Mancini, A finite element approximation of grazing collisions (submitted).
[37] P.A. Markowich, C. Ringhoffer and C. Schmeiser, Semiconductor equations. Springer-Verlag (1994).
[38] W.F. Miller Jr. and T. Noh, Finite differences versus finite elements in slab geometry, even-parity transport theory. Transport Theory Statist. Phys. 22 (1993) 247-270.
[39] J.E. Morel, T.A. Wareing and K. Smith, A linear-discontinuous spatial differencing scheme for S n radiative transfer calculations. J. Comput. Phys. 128 (1996) 445-462.
[40] Naldi, G. and Pareschi, L., Numerical schemes for kinetic equations in diffusive regimes. Appl. Math. Lett. 11 (1998) 29-55.
[41] L. Pareschi, Central differencing based numerical schemes for hyperbolic conservation laws with relaxation terms. J. Num. Anal. (to appear).
[42] B. Perthame, An introduction to kinetic schemes for gas dynamics. An introduction to recent developments in theory and numerics for conservation laws. L.N. in Computational Sc. and Eng., 5, D. Kroner, M. Ohlberger and C. Rohde Eds., Springer (1998).
[43] Prendergast, K.H. and Numerical, K. Xu hydrodynamics for gas-kinetic theory. J. Comput. Phys. 109 (1993) 53-66.
[44] Prendergast, K.H. and Numerical Navier-Stokes, K. Xu solutions from gas kinetic theory. J. Comput. Phys. 114 (1994) 9-17.
[45] G. Samba, Limite asymptotique d'un schéma d'éléments finis linéaires discontinus lumpés en régime diffusion. Rapport CEA (to appear).
[46] G.I. Taylor, Diffusion by continuous movements. Proc. London Math. Soc. 20 (1921) 196-212.
[47] B. Vanleer, On the relation between the upwind differencing schemes of Engquist-Osher, Godunov and Roe. SIAM J. Sci. Stat. Comp. 5 (1984) 1-20.

Keywords

Related content

Powered by UNSILO

Diffusion Limit of the Lorentz Model: Asymptotic Preserving Schemes

  • Christophe Buet (a1), Stéphane Cordier (a2), Brigitte Lucquin-Desreux (a3) and Simona Mancini (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.