Skip to main content Accessibility help
×
Home

Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary

  • Farshid Dabaghi (a1), Adrien Petrov (a1), Jérôme Pousin (a1) and Yves Renard (a1)

Abstract

This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.

Copyright

References

Hide All
[1] Alart, P. and Curnier, A., A generalized Newton method for contact problems with friction. J. Mech. Theor. Appl. 7 (1988) 6782.
[2] Armero, F. and Petocz, E., Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Engrg. 158 (1998) 269300.
[3] J.P. Aubin, Approximation of elliptic boundary-value problems. Pure and Applied Mathematics, Vol. XXVI. Wiley-Interscience (1972).
[4] Ball, J.M., Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 63 (1977) 370373.
[5] Bárcenas, D., The fundamental theorem of calculus for Lebesgue integral. Divulg. Mat. 8 (2000) 7585.
[6] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam (1973).
[7] M. Crouzeix and A.L. Mignot, Analyse numérique des équations différentielles. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1984).
[8] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. INSTN: Collection Enseignement. Masson, Paris (1988).
[9] K. Deimling, Multivalued differential equations. Vol. 1 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (1992).
[10] Doyen, D. and Ern, A., Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem. Commun. Math. Sci. 7 (2009) 10631072.
[11] D. Doyen, A. Ern and S. Piperno, Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. (2011) 223–249.
[12] A. Ern and J.L. Guermond, Theory and practice of finite elements. Appl. Math. Sci., vol. 159. Springer-Verlag, New York (2004).
[13] Hager, C. and Wohlmuth, B.I., Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements. SIAM J. Num. Anal. 47 (2009) 18631885.
[14] Hauret, P., Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact. Comput. Methods Appl. Mech. Engrg. 199 (2010) 29412957.
[15] Hugues, T.J.R., Taylor, R.L., Sackman, J.L., A. Curnier and W. Kano Knukulchai, A finite method for a class of contact-impact problems. Comput. Methods Appl. Mech. Engrg. 8 (1976) 249276.
[16] Khenous, H.B., Laborde, P. and Renard, Y., Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids 27 (2008) 918932.
[17] Krenk, S., Energy conservation in Newmark based time integration algorithms. Comput. Methods Appl. Mech. Engrg. 195 (2006) 61106124.
[18] N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies Appl. Math. SIAM, Philadelphia, Pa (1988).
[19] Kim, J.U., A boundary thin obstacle problem for a wave equation. Commun. Partial Differential Eqs. 14 (1989) 10111026.
[20] Laursen, T.A. and Chawla, V., Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Engrg. 40 (1997) 863886.
[21] Laursen, T.A. and Love, G.R., Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework. Int. J. Numer. Methods Engrg. 53 (2002) 245274.
[22] Lebeau, G. and Schatzman, M., A wave problem in a half-space with a unilateral constraint at the boundary. J. Differ. Eqs. 53 (1984) 309361.
[23] Moreau, J.-J., Liaisons unilatérales sans frottement et chocs inélastiques. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 296 (1983) 14731476.
[24] J.-J. Moreau and P.D. Panagiotopoulos, Nonsmooth mechanics and applications. Vol. 302 of CISM Courses Lect. Springer-Verlag, Vienna (1988).
[25] Paoli, L., Time discretization of vibro-impact. R. Soc. London Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (2001) 24052428.
[26] Paoli, L. and Schatzman, M., A numerical scheme for impact problem I. SIAM J. Numer. Anal. 40 (2002) 702733.
[27] Paoli, L. and Schatzman, M., Approximation et existence en vibro-impact. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 10031007.
[28] Renard, Y., Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Meth. Appl. Mech. Engng. 256 (2013) 3855.
[29] Y. Renard and J. Pommier, Getfem++. An Open Source generic C++ library for finite element methods. http://home.gna.org/getfem.
[30] W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York, 2nd edn (1974).
[31] Schatzman, M., A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73 (1980) 138191.
[32] Schatzman, M. and Bercovier, M., Numerical approximation of a wave equation with unilateral constraints. Math. Comput. 53 (1989) 5579.
[33] K. Schweizerhof, J.O. Hallquist and D. Stillman, Efficiency refinements of contact strategies and algorithms in explicit finite element programming. Compt. Plasticity. Edited by Owen, Onate, Hinton, Pineridge (1992) 457–482.
[34] Simon, J., Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 6596.
[35] P. Wriggers, Computational contact mechanics. John Wiley and Sons Ltd. (2002).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed