Skip to main content Accessibility help

Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary

  • Farshid Dabaghi (a1), Adrien Petrov (a1), Jérôme Pousin (a1) and Yves Renard (a1)


This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.



Hide All
[1] Alart, P. and Curnier, A., A generalized Newton method for contact problems with friction. J. Mech. Theor. Appl. 7 (1988) 6782.
[2] Armero, F. and Petocz, E., Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Engrg. 158 (1998) 269300.
[3] J.P. Aubin, Approximation of elliptic boundary-value problems. Pure and Applied Mathematics, Vol. XXVI. Wiley-Interscience (1972).
[4] Ball, J.M., Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 63 (1977) 370373.
[5] Bárcenas, D., The fundamental theorem of calculus for Lebesgue integral. Divulg. Mat. 8 (2000) 7585.
[6] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam (1973).
[7] M. Crouzeix and A.L. Mignot, Analyse numérique des équations différentielles. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1984).
[8] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. INSTN: Collection Enseignement. Masson, Paris (1988).
[9] K. Deimling, Multivalued differential equations. Vol. 1 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (1992).
[10] Doyen, D. and Ern, A., Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem. Commun. Math. Sci. 7 (2009) 10631072.
[11] D. Doyen, A. Ern and S. Piperno, Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. (2011) 223–249.
[12] A. Ern and J.L. Guermond, Theory and practice of finite elements. Appl. Math. Sci., vol. 159. Springer-Verlag, New York (2004).
[13] Hager, C. and Wohlmuth, B.I., Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements. SIAM J. Num. Anal. 47 (2009) 18631885.
[14] Hauret, P., Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact. Comput. Methods Appl. Mech. Engrg. 199 (2010) 29412957.
[15] Hugues, T.J.R., Taylor, R.L., Sackman, J.L., A. Curnier and W. Kano Knukulchai, A finite method for a class of contact-impact problems. Comput. Methods Appl. Mech. Engrg. 8 (1976) 249276.
[16] Khenous, H.B., Laborde, P. and Renard, Y., Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids 27 (2008) 918932.
[17] Krenk, S., Energy conservation in Newmark based time integration algorithms. Comput. Methods Appl. Mech. Engrg. 195 (2006) 61106124.
[18] N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies Appl. Math. SIAM, Philadelphia, Pa (1988).
[19] Kim, J.U., A boundary thin obstacle problem for a wave equation. Commun. Partial Differential Eqs. 14 (1989) 10111026.
[20] Laursen, T.A. and Chawla, V., Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Engrg. 40 (1997) 863886.
[21] Laursen, T.A. and Love, G.R., Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework. Int. J. Numer. Methods Engrg. 53 (2002) 245274.
[22] Lebeau, G. and Schatzman, M., A wave problem in a half-space with a unilateral constraint at the boundary. J. Differ. Eqs. 53 (1984) 309361.
[23] Moreau, J.-J., Liaisons unilatérales sans frottement et chocs inélastiques. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 296 (1983) 14731476.
[24] J.-J. Moreau and P.D. Panagiotopoulos, Nonsmooth mechanics and applications. Vol. 302 of CISM Courses Lect. Springer-Verlag, Vienna (1988).
[25] Paoli, L., Time discretization of vibro-impact. R. Soc. London Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (2001) 24052428.
[26] Paoli, L. and Schatzman, M., A numerical scheme for impact problem I. SIAM J. Numer. Anal. 40 (2002) 702733.
[27] Paoli, L. and Schatzman, M., Approximation et existence en vibro-impact. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 10031007.
[28] Renard, Y., Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Meth. Appl. Mech. Engng. 256 (2013) 3855.
[29] Y. Renard and J. Pommier, Getfem++. An Open Source generic C++ library for finite element methods.
[30] W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York, 2nd edn (1974).
[31] Schatzman, M., A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73 (1980) 138191.
[32] Schatzman, M. and Bercovier, M., Numerical approximation of a wave equation with unilateral constraints. Math. Comput. 53 (1989) 5579.
[33] K. Schweizerhof, J.O. Hallquist and D. Stillman, Efficiency refinements of contact strategies and algorithms in explicit finite element programming. Compt. Plasticity. Edited by Owen, Onate, Hinton, Pineridge (1992) 457–482.
[34] Simon, J., Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 6596.
[35] P. Wriggers, Computational contact mechanics. John Wiley and Sons Ltd. (2002).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed