Skip to main content Accessibility help

Consistency, accuracy and entropy behaviour of remeshed particle methods

  • Lisl Weynans (a1) (a2) (a3) and Adrien Magni (a4)


In this paper we analyze the consistency, the accuracy and some entropy properties of particle methods with remeshing in the case of a scalar one-dimensional conservation law. As in [G.-H. Cottet and L. Weynans, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 51–56] we re-write particle methods with remeshing in the finite-difference formalism. This allows us to prove the consistency of these methods, and accuracy properties related to the accuracy of interpolation kernels. Cottet and Magni devised recently in [G.-H. Cottet and A. Magni, C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1367–1372] and [A. Magni and G.-H. Cottet, J. Comput. Phys. 231 (2012) 152–172] TVD remeshing schemes for particle methods. We extend these results to the nonlinear case with arbitrary velocity sign. We present numerical results obtained with these new TVD particle methods for the Euler equations in the case of the Sod shock tube. Then we prove that with these new TVD remeshing schemes the particle methods converge toward the entropy solution of the scalar conservation law.



Hide All
[1] Ben Moussa, B. and Vila, J.P., Convergence of SPH methods for scalar nonlinear conservation laws. SIAM J. Numer. Anal. 37 (2000) 863887.
[2] W. Benz, The Numerical Modelling of Nonlinear Stellar Pulsations, Problems and Prospects, a review, in Smooth Particle Hydrodynamics : NATO ASIS Series (1989) 269–287.
[3] C. Berthon, Contribution à l’analyse numérique des équations de Navier-Stokes compressibles à deux entropies spécifiques. Application à la turbulence compressible. Ph.D. thesis, Université Paris VI (1998).
[4] Coquerelle, M. and Cottet, G.-H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (2008) 91219137.
[5] G.-H. Cottet and P.D. Koumoutsakos, Vortex methods. Cambridge University Press (2000).
[6] Cottet, G.-H. and Magni, A., TVD remeshing schemes for particle methods. C. R. Acad. Sci. Paris, Ser. I 347 (2009) 13671372.
[7] Cottet, G.-H. and Weynans, L., Particle methods revisited : a class of high-order finite-difference schemes. C. R. Acad. Sci. Paris, Ser. I 343 (2006) 5156.
[8] Cottet, G.-H., Michaux, B., Ossia, S. and Vanderlinden, G., A comparison of spectral and vortex methods in three-dimensional incompressible flow. J. Comput. Phys. 175 (2002) 702712.
[9] M.W. Evans and F.H. Harlow, The particle-in-cell method for hydrodynamics calculations. Technical Report, Los Alamos Scientific Laboratory (1956).
[10] Ghoniem, A. and Wee, D., Modified interpolation kernels for treating diffusion and remeshing in vortex methods. J. Comput. Phys. 213 (2006) 239263.
[11] Gingold, R.A. and Monaghan, J.J., Smoothed particle hydrodynamics : theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (1977) 375389.
[12] Harlow, F.H., Hydrodynamic problems involving large fluid distorsion. J. Assoc. Comput. Mach. 4 (1957) 137142.
[13] Harten, A., High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357393.
[14] Hou, T. and Lefloch, P.G., Why non-conservative schemes converge to wrong solutions : error analysis. Math. Comput. 62 (1994) 497530.
[15] Koumoutsakos, P. and Hieber, S.. A Lagrangian particle level set method. J. Comput. Phys. 210 (2005) 342367.
[16] Koumoutsakos, P. and Leonard, A., High resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296 (1995) 138.
[17] Lanson, N. and Vila, J.P., Convergence des méthodes particulaires renormalisées pour les systèmes de Friedrichs. C. R. Acad. Sci. Paris, Ser. I 349 (2005) 465470.
[18] Lanson, N. and Vila, J.P., Renormalized meshfree schemes II : convergence for scalar conservation laws. SIAM J. Numer. Anal. 46 (2008) 19351964.
[19] R.J. LeVeque, Finite-volume methods for hyperbolic problems. Cambridge University Press (2002).
[20] A. Magni, Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d’équations de transport. Ph.D. thesis, Université de Grenoble. Available on : tel-00623128/fr/ (2011).
[21] Magni, A. and Cottet, G.-H., Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys. 231 (2012) 152172.
[22] Majda, A. and Osher, S., Numerical viscosity and the entropy condition. Commun. Pure Appl. Math. 32 (1979) 797838.
[23] Monaghan, J.J., Why particle methods work. SIAM J. Sci. Stat. Comput 3 (1982) 422433.
[24] Monaghan, J.J., Extrapolating B-splines for interpolation. J. Comput. Phys. 60 (1985) 253262.
[25] Monaghan, J.J., Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30 (1992) 543574.
[26] Ploumhans, P., Winckelmans, G.S., Salmon, J.K., Leonard, A. and Warren, M.S., Vortex methods for direct numerical simulation of three-dimensional bluff body flows : application to the sphere at Re = 300, 500, and 1000. J. Comput. Phys. 178 (2002) 427463.
[27] Poncet, P., Topological aspects of the three-dimensional wake behind rotary oscillating circular cylinder. J. Fluid Mech. 517 (2004) 2753.
[28] Sod, G.A., A survey of several finite-difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27 (1978) 1131.
[29] L. Weynans, Méthode particulaire multi-niveaux pour la dynamique des gaz, application au calcul d’écoulements multifluides. Ph.D. thesis, Université Joseph Fourier. Available on : (2006).


Related content

Powered by UNSILO

Consistency, accuracy and entropy behaviour of remeshed particle methods

  • Lisl Weynans (a1) (a2) (a3) and Adrien Magni (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.