Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T18:41:32.252Z Has data issue: false hasContentIssue false

An equilibrated residual method with a computable error approximation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes

Published online by Cambridge University Press:  21 June 2006

Sergey Grosman*
Affiliation:
Institut für Mathematik und Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Universität der Bundeswehr München, 85577 Neubiberg, Germany. sergey.grosman@unibw-muenchen.de
Get access

Abstract

Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in a discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both, the perturbation parameters of the problem and the anisotropy of the mesh. The equilibrated residual method has been shown to provide one of the most reliable error estimates for the reaction-diffusion problem. Its modification suggested by Ainsworth and Babuška has been proved to be robust for the case of singular perturbation. In the present work we investigate the modified method on anisotropic meshes. The method in the form of Ainsworth and Babuška is shown here to fail on anisotropic meshes. We suggest a new modification based on the stretching ratios of the mesh elements. The resulting error estimator is equivalent to the equilibrated residual method in the case of isotropic meshes and is proved to be robust on anisotropic meshes as well. Among others, the equilibrated residual method involves the solution of an infinite dimensional local problem on each element. In practical computations an approximate solution to this local problem was successfully computed. Nevertheless, up to now no rigorous analysis has been done showing the appropriateness of any computable approximation. This demands special attention since an improper approximate solution to the local problem can be fatal for the robustness of the whole method. In the present work we provide one of the desired approximations. We prove that the method is not affected by the approximate solution of the local problem.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M. and Babuška, I., Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal. 36 (1999) 331353 (electronic). See also Corrigendum at http://www.maths.strath.ac.uk/~aas98107/papers.html. CrossRef
Ainsworth, M. and Oden, J.T., A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65 (1993) 2350. CrossRef
M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley (2000).
Apel, T., Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements. Computing 60 (1998) 157174. CrossRef
T. Apel, Treatment of boundary layers with anisotropic finite elements. Z. Angew. Math. Mech. (1998).
T. Apel, Anisotropic finite elements: local estimates and applications. B.G. Teubner, Stuttgart (1999).
Apel, T., Grosman, S., Jimack, P.K. and Meyer, A., A new methodology for anisotropic mesh refinement based upon error gradients. Appl. Numer. Math. 50 (2004) 329341. CrossRef
Apel, T. and Lube, G., Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem. Appl. Numer. Math. 26 (1998) 415433. CrossRef
Babuška, I. and Rheinboldt, W., A posteriori error estimates for the finite element method. Int. J. Numer. Meth. Eng. 12 (1978) 15971615. CrossRef
Bank, R. and Weiser, A., Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283301. CrossRef
Bufler, H. and Stein, E., Zur Plattenberechnung mittels finiter Elemente. Ingenier Archiv 39 (1970) 248260. CrossRef
P.G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam. Studies in Mathematics and its Applications, Vol. 4, (1978).
M. Dobrowolski, S. Gräf and C. Pflaum, On a posteriori error estimators in the infinte element method on anisotropic meshes. Electron. Trans. Numer. Anal. 8 (1999) 36–45.
S. Grosman, The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes. SFB393-Preprint 2, Technische Universität Chemnitz, SFB 393 (Germany), (2004).
R. Hagen, S. Roch, and B. Silbermann, C*-algebras and numerical analysis. Marcel Dekker Inc., New York (2001).
Han, H. and Kellogg, R.B., Differentiability properties of solutions of the equation $-\epsilon^ 2\delta u+ru=f(x,y)$ in a square. SIAM J. Math. Anal. 21 (1990) 394408. CrossRef
G. Kunert, A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes. Logos Verlag, Berlin, 1999. Also PhD thesis, TU Chemnitz, http://archiv.tu-chemnitz.de/pub/1999/0012/index.html.
Kunert, G., An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471490. CrossRef
Kunert, G., A local problem error estimator for anisotropic tetrahedral finite element meshes. SIAM J. Numer. Anal. 39 (2001) 668689. CrossRef
Kunert, G., Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15 (2001) 237259. CrossRef
Kunert, G., Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes. ESAIM: M2AN 35 (2001) 10791109. CrossRef
Kunert, G. and Verfürth, R., Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86 (2000) 283303. CrossRef
Ladevèze, P. and Leguillon, D., Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20 (1983) 485509. CrossRef
Siebert, K.G., An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373398. CrossRef
R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner Series Advances in Numerical Mathematics. Chichester: John Wiley & Sons. Stuttgart: B.G. Teubner (1996).
Vogelius, M. and Babuška, I., On a dimensional reduction method. I. The optimal selection of basis functions. Math. Comp. 37 (1981) 3146.