[1]
Aregba-Driollet, D. and Natalini, R., Convergence of relaxation schemes for conservation laws.
*Appl. Anal.*
61 (1996) 163-193.

[2]
Aregba-Driollet, D. and Natalini, R., Discrete kinetic schemes for multidimensional systems of conservation laws.
*SIAM J. Numer. Anal.*
37 (2000) 1973-2004.

[3]
I. Babuska, The adaptive finite element method. TICAM Forum Notes no 7, University of Texas at Austin (1997).

[4]
Babuska, I. and Gui, W., Basic principles of feedback and adaptive approaches in the finite element method.
*Comput. Methods Appl. Mech. Engrg.*
55 (1986) 27-42.

[5]
Berger, M. and LeVeque, R., Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems.
*SIAM J. Numer. Anal.*
35 (1998) 2298-2316.

[6]
Bouchut, F., Construction of BGK models with a family of kinetic entropies for a given system of conservation laws.
*J. Statist. Phys.*
95 (1999) 113-170.

[7]
S.C. Brenner and L.R. Scott, *The Mathematical Theory of Finite Element Methods*. Springer-Verlag, New York (1994).

[8]
Caflisch, R.E. and Papanicolaou, G.C., The fluid dynamical limit of a nonlinear model Boltzmann equation.
*Comm. Pure Appl. Math.*
32 (1979) 589-616.

[9]
Chen, G.-Q., Levermore, C.D. and Liu, T.-P., Hyperbolic conservation laws with stiff relaxation terms and entropy.
*Comm. Pure Appl. Math.*
47 (1994) 789-830.

[10]
Cockburn, B., Coquel, F. and LeFloch, P., An error estimate for finite volume methods for conservation laws.
*Math. Comp.*
64 (1994) 77-103.

[11]
Cockburn, B. and Gau, H., *A posteriori* error estimates for general numerical methods for scalar conservation laws.
*Math. Appl. Comp.*
14 (1995) 37-47.

[12]
Cockburn, B. and Gremaud, P.-A., Error estimates for finite element methods for scalar conservation laws.
*SIAM J. Numer. Anal.*
33 (1996) 522-554.

[13]
Cockburn, B., Hou, S. and Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case.
*Math. Comp.*
54 (1990) 545-581.

[14]
B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. A. Quarteroni (Ed.), *Lect. Notes Math.*
**1697**, Springer-Verlag (1998).

[15]
Cockburn, B., Lin, S.Y. and Shu, C.-W., Runge-Kutta, TVB local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems.
*J. Comput. Phys.*
84 (1989) 90-113.

[16]
Cockburn, B. and Shu, C.-W., Runge-Kutta, TVB local projection discontinuous Galerkin finite element method for conservation laws. II. General framework.
*Math. Comp.*
52 (1989) 411-435.

[17]
Coquel, F. and Perthame, B., Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics.
*SIAM J. Numer. Anal.*
35 (1998) 2223-2249.

[18]
K. Dekker and J.D. Verwer, *Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations*. CWI Monographs, North-Holland, Amsterdam (1984).

[19]
L. Gosse and Ch. Makridakis, *A-posteriori* error estimates for numerical approximations to scalar conservation laws: schemes satisfying strong and weak entropy inequalities. IACM-FORTH Technical Report 98-4 (1998).

[20]
Gosse, L. and Makridakis, Ch., Two *a posteriori* error estimates for one dimensional scalar conservation laws.
*SIAM J. Numer. Anal.*
38 (2000) 964-988.

[21]
L. Gosse and A. Tzavaras, Convergence of relaxation schemes to the equations of elastodynamics. *Math. Comp.* (to appear).

[22]
Jacobs, D., McKinney, B., Shearer, M., Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation.
*J. Differential Equations*
116 (1995) 448-467.

[23]
Jaffré, J., Johnson, C. and Szepessy, A., Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws.
*Math. Models Methods Appl. Sci.*
5 (1995) 367-386.

[24]
Jin, S. and Xin, Z., The relaxing schemes for systems of conservation laws in arbitrary space dimensions.
*Comm. Pure Appl. Math.*
48 (1995) 235-277.

[25]
Johnson, C. and Szepessy, A., On the convergence of a finite element method for a nonlinear hyperbolic conservation law.
*Math. Comp.*
49 (1987) 427-444.

[26]
Johnson, C. and Szepessy, A., Adaptive finite element methods for conservation laws. Part I: The general approach.
*Comm. Pure Appl. Math.*
48 (1995) 199-234.

[27]
T. Katsaounis and Ch. Makridakis, Finite volume relaxation schemes for multidimensional conservation laws. *Math. Comp.* (to appear).

[28]
Katsoulakis, M.A., Kossioris, G.T. and Makridakis, Ch., Convergence and error estimates of relaxation schemes for multidimensional conservation laws.
*Comm. Partial Differential Equations*
24 (1999) 395-424.

[29]
Katsoulakis, M.A. and Tzavaras, A.E., Contractive relaxation systems and the scalar multidimensional conservation law.
*Comm. Partial Differential Equations*
22 (1997) 195-233.

[30]
Kröner, D. and Ohlberger, M., *A posteriori* error estimates for upwind finite volume schemes for nonlinear conservation laws in multidimensions.
*Math. Comp.*
69 (2000) 25-39.

[31]
Kurganov, A. and Tadmor, E., New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations.
*J. Comput. Phys.*
160 (2000) 241-282.

[32]
Kuznetzov, N.N., Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation.
*USSR Comput. Math. Math. Phys.*
16 (1976) 105-119.

[33]
LeVeque, R.J. and Yee, H.C., A study of numerical methods for hyperbolic conservation laws with stiff terms.
*J. Comput. Phys.*
86 (1990) 187-210.

[34]
Liu, T.-P., Hyperbolic conservation laws with relaxation.
*Comm. Math. Phys.*
108 (1987) 153-175.

[35]
Lucier, B.J., A moving mesh numerical method for hyperbolic conservation laws.
*Math. Comp.*
40 (1983) 91-106.

[36]
J.J.H. Miller, E. O'Riordan and G.I. Shishkin, *Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions*. World Scientific Publishing Co., River Edge, NJ (1996).

[37]
R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws. *Comm. Pure Appl. Math.*
**8 ** (1996) 795-823.

[38]
Natalini, R., A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws.
*J. Differential Equations*
148 (1998) 292-317.

[39]
Nessyahu, H. and Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws.
*J. Comput. Phys.*
87 (1990) 408-463.

[40]
Osher, S. and Tadmor, E., On the convergence of difference approximations to scalar conservation laws.
*Math. Comp.*
50 (1988) 19-51.

[41]
B. Perthame, An introduction to kinetic schemes for gas dynamics, in: An introduction to recent developments in theory and numerics for conservation laws, D. Kröner, M. Ohlberger and C. Rohde (Eds.), *Lect. Notes Comput. Sci. Eng.*
**5**, Springer-Verlag (1998) 1-27.

[42]
H.-G. Roos, M. Stynes and L. Tobiska, *Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems*. Springer-Verlag, Berlin (1996).

[43]
Schroll, H.J., Tveito, A. and Winther, R., An *L*
^{1} error bound for a semi-implicit difference scheme applied to a stiff system of conservation laws.
*SIAM J. Numer. Anal.*
34 (1997) 1152-1166.

[44]
D. Serre, Relaxation semi linéaire et cinétique des systèmes de lois de conservation. *Ann. Inst. H. Poincaré, Anal. Non Linéaire*
**17** (2000) 169-192.

[45]
Shu, C.-W., Total-variation-diminishing time discretizations.
*SIAM J. Sci. Comput.*
9 (1988) 1073-1084.

[46]
Shu, C.-W. and Osher, S., Efficient implementation of essentially nonoscillatory shock-capturing schemes.
*J. Comput. Phys.*
77 (1988) 439-471.

[47]
Sonar, T. and Süli, E., A dual graph-norm refinement indicator for finite volume approximations of the Euler equations.
*Numer. Math.*
78 (1998) 619-658.

[48]
E. Süli, *A-posteriori* error analysis and adaptivity for finite element approximations of hyperbolic problems, in: An introduction to recent developments in theory and numerics for conservation laws, D. Kröner, M. Ohlberger and C. Rohde (Eds.), *Lect. Notes Comput. Sci. Eng.*
**5**, Springer-Verlag (1998) 123-194 .

[49]
Szepessy, A., Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions.
*Math. Comp.*
53 (1989) 527-545.

[50]
A. Tzavaras, Viscosity and relaxation approximation for hyperbolic systems of conservation laws, in: An introduction to recent developments in theory and numerics for conservation laws, D. Kröner, M. Ohlberger and C. Rohde (Eds.), *Lect. Notes Comput. Sci. Eng.*
**5**, Springer-Verlag (1998) 73-122.

[51]
Tzavaras, A., Materials with internal variables and relaxation to conservation laws.
*Arch. Rational Mech. Anal.*
146 (1999) 129-155.