Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-8zwnf Total loading time: 0.341 Render date: 2022-12-03T10:22:23.527Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

About stability of equilibrium shapes

Published online by Cambridge University Press:  15 April 2002

Marc Dambrine
Affiliation:
Antenne de Bretagne de l'ENS Cachan, Institut de Recherche Mathématique de Rennes, Campus de Ker Lann, 35170 Bruz, France. (dambrine@bretagne.ens-cachan.fr)
Michel Pierre
Affiliation:
Antenne de Bretagne de l'ENS Cachan, Institut de Recherche Mathématique de Rennes, Campus de Ker Lann, 35170 Bruz, France. (pierre@bretagne.ens-cachan.fr)
Get access

Abstract

We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy functional. We analyze a problem arising when looking at the positivity of the second derivative in order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity- holds, it does for a weaker norm than the norm for which the functional is twice differentiable and local optimality cannot be a priori deduced. We solve this problem for a particular but significant example. We prove "weak-coercivity" of the second derivative uniformly in a "strong" neighborhood of the equilibrium shape.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brancher, J.-P., Etay, J. and Séro-Guillaume, O., Formage d'une lame métallique liquide. Calculs et expériences. J. Mec. Theor. Appl. 2 (1983) 977-989.
D. Bucur and J.-P. Zolésio, Anatomy of the Shape Hessian Via Lie Brackets. Ann. Mat. Pura Appl. (IV) CLXXIII (1997) 127-143.
Crouzeix, M., Variational approach of a magnetic shaping problem. Eur. J. Mech. B Fluids 10 (1991) 527-536.
M. Dambrine, Hessiennes de formes et stabilité de formes critiques. Ph.D. thesis, Université de Rennes 1, France (2000).
R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Tome 2. Masson, Paris (1985).
Delfour, M. and Zolésio, J.-P., Velocity Method and Lagrangian Formulation for the Computation of the Shape Hessian. SIAM Control Optim. 29 (1991) 1414-1442. CrossRef
J. Descloux, On the two dimensional magnetic shaping problem without surface tension. Report, Analysis and numerical analysis, 07.90, École Polytechnique Fédérale de Lausanne (1990).
Descloux, J., Stability of the solutions of the bidimensional magnetic shaping problem in absence of surface tension. Eur. J. Mech. B Fluids 10 (1991) 513-526.
Descloux, J., A stability result for the magnetic shaping problem. Z. Angew. Math. Phys. 45 (1994) 543-555. CrossRef
D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 2nd edn (1983).
A. Henrot and M. Pierre, Stability in shaping problems (to appear).
A. Henrot and M. Pierre, About existence of a free boundary in electromagnetic shaping, in Recent advances in nonlinear elliptic and parabolic problems (Nancy, 1988), Longman Sci. Tech., Harlow (1989) 283-293.
Henrot, A. and Pierre, M., Un problème inverse en formage des métaux liquides. RAIRO Modél. Math. Anal. Numér. 23 (1989) 155-177. CrossRef
A. Henrot and M. Pierre, About critical points of the energy in the electromagnetic shaping problem, in Boundary Control and Boundary variations, Springer-Verlag, 178 (1991) 238-252.
Henrot, A. and Pierre, M., About existence of equilibria in electromagnetic casting. Quart. Appl. Math. 49 (1991) 563-575. CrossRef
F. Murat and J. Simon, Sur le contrôle par un domaine géométrique. Rapport du L.A. 189, Université Paris VI, France (1976).
A. Novruzi, Contribution en Optimisation de Formes et Applications. Ph.D. thesis, Université Henri Poincaré, Nancy (1996).
A. Novruzi and M. Pierre, Structure of Shape Derivatives. Prépublication IRMAR, n° 00-07, Rennes (2000).
Séro-Guillaume, O. and Bernardin, D., Note on a Hamiltonian formalism for the flow of a magnetic fluid with a free surface. J. Fluid Mech. 181 (1987) 381-386.
Simon, J., Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980) 649-687. CrossRef
J. Sokołowski and J.-P. Zolésio, Introduction to shape optimization. Springer-Verlag, Berlin (1992).

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

About stability of equilibrium shapes
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

About stability of equilibrium shapes
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

About stability of equilibrium shapes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *