Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T19:29:02.354Z Has data issue: false hasContentIssue false

A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems

Published online by Cambridge University Press:  05 December 2008

Alexandre Ern
Affiliation:
Université Paris-Est, CERMICS, École des Ponts, 77455 Marne-la-Vallée Cedex 2, France. ern@cermics.enpc.fr
Sébastien Meunier
Affiliation:
EDF R&D, 1 avenue du Général de Gaulle, 92141 Clamart Cedex, France. sebastien.meunier@edf.fr
Get access

Abstract

We analyze Euler-Galerkin approximations (conforming finite elements in space and implicit Euler in time) to coupled PDE systems in which one dependent variable, say u, is governed by an elliptic equation and the other, say p, by a parabolic-like equation. The underlying application is the poroelasticity system within the quasi-static assumption. Different polynomial orders are used for the u- and p-components to obtain optimally convergent a priori bounds for all the terms in the error energy norm. Then, a residual-type a posteriori error analysis is performed. Upon extending the ideas of Verfürth for the heat equation [Calcolo40 (2003) 195–212], an optimally convergent bound is derived for the dominant term in the error energy norm and an equivalence result between residual and error is proven. The error bound can be classically split into time error, space error and data oscillation terms. Moreover, upon extending the elliptic reconstruction technique introduced by Makridakis and Nochetto [SIAM J. Numer. Anal.41 (2003) 1585–1594], an optimally convergent bound is derived for the remaining terms in the error energy norm. Numerical results are presented to illustrate the theoretical analysis.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babuška, I., Feistauer, M. and Šolín, P., On one approach to a posteriori error estimates for evolution problems solved by the method-of-lines. Numer. Math. 89 (2001) 225256. CrossRef
Becker, R. and Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10 (2001) 1102. CrossRef
Bergam, A., Bernardi, C. and Mghazli, Z., A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005) 11171138. CrossRef
Biot, M.A., General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155169. CrossRef
C. Chavant and A. Millard, Simulation d'excavation en comportement hydro-mécanique fragile. Technical report, EDF R&D/AMA and CEA/DEN/SEMT (2007) http://www.gdrmomas.org/ex_qualifications.html.
Chen, Z. and Feng, J., An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73 (2004) 11671193. CrossRef
Clément, P., Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 7784.
K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77.
K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in Ɩ Ɩ 2 and ƖƖ . SIAM J. Numer. Anal. 32 (1995) 706–740.
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004).
Lakkis, O. and Makridakis, Ch., Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comp. 75 (2006) 16271658. CrossRef
Ch. Makridakis, R.H. Nochetto, Ellitpic reconstruction and a posteriori error estimates for elliptic problems. SIAM J. Numer. Anal. 41 (2003) 15851594. CrossRef
S. Meunier, Analyse d'erreur a posteriori pour les couplages hydro-mécaniques et mise en œuvre dans Code_Aster. Ph.D. Thesis, École nationale des ponts et chaussées, France (2007).
Murad, M.A. and Loula, A.F.D., Improved accuracy in finite element analysis of Biot's consolidation problem. Comput. Meth. Appl. Mech. Engrg. 95 (1992) 359382. CrossRef
Murad, M.A. and Loula, A.F.D., On stability and convergence of finite element approximations of Biot's consolidation problem. Internat. J. Numer. Methods Engrg. 37 (1994) 645667. CrossRef
Murad, M.A., Thomée, V. and Loula, A.F.D., Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem. SIAM J. Numer. Anal. 33 (1996) 10651083. CrossRef
Picasso, M., Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223237. CrossRef
Scott, R.L. and Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483493. CrossRef
Showalter, R.E., Diffusion in deformable media. IMA Volumes in Mathematics and its Applications 131 (2000) 115130. CrossRef
Showalter, R.E., Diffusion in poro-elastic media. J. Math. Anal. Appl. 251 (2000) 310340. CrossRef
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997).
Verfürth, R., A posteriori error estimations and adaptative mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 6783. CrossRef
R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Chichester, UK (1996).
Verfürth, R., A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195212. CrossRef
K. von Terzaghi, Theoretical Soil Mechanics. Wiley, New York (1936).
Wheeler, M., A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723759. CrossRef