Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T11:00:02.555Z Has data issue: false hasContentIssue false

Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems

Published online by Cambridge University Press:  24 March 2010

Philippe Moireau
Affiliation:
INRIA, B.P. 105, 78153 Le Chesnay Cedex, France. philippe.moireau@inria.fr; dominique.chapelle@inria.fr
Dominique Chapelle
Affiliation:
INRIA, B.P. 105, 78153 Le Chesnay Cedex, France. philippe.moireau@inria.fr; dominique.chapelle@inria.fr
Get access

Abstract

We propose a general reduced-order filtering strategy adapted to Unscented Kalman Filtering for any choice of sampling points distribution. This provides tractable filtering algorithms which can be used with large-dimensional systems when the uncertainty space is of reduced size, and these algorithms only invoke the original dynamical and observation operators, namely, they do not require tangent operator computations, which of course is of considerable benefit when nonlinear operators are considered. The algorithms are derived in discrete time as in the classical UKF formalism – well-adapted to time discretized dynamical equations – and then extended into consistent continuous-time versions. This reduced-order filtering approach can be used in particular for the estimation of parameters in large dynamical systems arising from the discretization of partial differential equations, when state estimation can be handled by an adequate Luenberger observer inspired from feedback control. In this case, we give an analysis of the joint state-parameter estimation procedure based on linearized error, and we illustrate the effectiveness of the approach using a test problem inspired from cardiac biomechanics.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AHA/ACC/SNM, Standardization of cardiac tomographic imaging. Circulation 86 (1992) 338339. CrossRefPubMed
Axel, L., Montillo, A. and Kim, D., Tagged magnetic resonance imaging of the heart: a survey. Med. Image Anal. 9 (2005) 376. CrossRef
K.J. Bathe, Finite Element Procedures. Prentice-Hall, USA (1996).
J. Blum, F.X. Le Dimet and I.M. Navon, Data assimilation for geophysical fluids, in Handbook of Numerical Analysis: Computational Methods for the Atmosphere and the Oceans, R. Temam and J. Tribbia Eds., Elsevier (2008).
Cane, M.A., Kaplan, A., Miller, R.N., Tang, B., Hackert, E.C. and Busalacchi, A.J., Mapping tropical Pacific sea level: Data assimilation via a reduced state space Kalman filter. J. Geophys. Res. 101 (1996) 2259922618. CrossRef
Chaabane, S. and Jaoua, M., Identification of Robin coefficients by the means of boundary measurements. Inv. Prob. 15 (1999) 14251438. CrossRef
Chapelle, D., Moireau, P. and Le Tallec, P., Robust filtering for joint state-parameter estimation in distributed mechanical systems. DCDS–A 23 (2009) 6584.
Ervedoza, S. and Zuazua, E., Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91 (2009) 2048. CrossRef
Hoteit, I., Pham, D.-T. and Blum, J., A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J. Mar. Syst. 36 (2002) 101127. CrossRef
S.J. Julier and J.K. Uhlmann, Reduced Sigma Point Filters for the Propagation of Means and Covariances through Nonlinear Transformations, in Proc. of IEEE Am. Contr. Conf., Anchorage AK, USA, 8–10 May (2002) 887–892.
S.J. Julier and J.K. Uhlmann, The Scaled Unscented Transformation, in Proc. of IEEE Am. Contr. Conf., Anchorage AK, USA, 8–10 May (2002) 4555–4559.
S. Julier, J. Uhlmann and H. Durrant-Whyte, A new approach for filtering nonlinear systems, in American Control Conference (1995) 1628–1632.
Julier, S., Uhlmann, J. and Durrant-Whyte, H., A new method for the nonlinear transformation of means and covariances in filter and estimators. IEEE Trans. Automat. Contr. 45 (2000) 447482. CrossRef
P. Le Tallec, Numerical methods for nonlinear three-dimensional elasticity, in Handbook of Numerical Analysis 3, P.G. Ciarlet and J.-L. Lions Eds., Elsevier (1994).
Lefebvre, T., Bruyninckx, H. and De Schuller, J., Comments on “A new method for the nonlinear transformation of means and covariances in filters and estimators” [and authors' reply]. IEEE Trans. Automat. Contr. 47 (2002) 1406– 1409. CrossRef
Luenberger, D.G., An introduction to observers. IEEE Trans. Automat. Contr. 16 (1971) 596602. CrossRef
Moireau, P., Chapelle, D. and Le Tallec, P., Joint state and parameter estimation for distributed mechanical systems. Comput. Meth. Appl. Mech. Eng. 197 (2008) 659677. CrossRef
Moireau, P., Chapelle, D. and Le Tallec, P., Filtering for distributed mechanical systems using position measurements: Perspectives in medical imaging. Inv. Prob. 25 (2009) 035010. CrossRef
Pham, D.-T., Verron, J. and Gourdeau, L., Filtres de Kalman singuliers évolutifs pour l'assimilation de données en océanographie. C. R. Acad. Sci. – Ser. IIA 326 (1998) 255260.
Pham, D.T., Verron, J. and Roubeaud, M.C., A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Marine Systems 16 (1998) 323341. CrossRef
Sarkka, S., On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. Automat. Contr. 52 (2007) 16311641. CrossRef
D. Simon, Optimal State Estimation: Kalman, H, and Nonlinear Approaches. Wiley-Interscience (2006).
Wu, M. and Smyth, A.W., Application of the unscented Kalman filter for real-time nonlinear structural system identification. Struct. Contr. Health. Monit. 14 (2006) 971990. CrossRef
Q. Zhang and A. Clavel, Adaptive observer with exponential forgetting factor for linear time varying systems, in Proceedings of the 40th IEEE Conference on Decision and Control 4 (2001) 3886–3891.