Skip to main content Accessibility help

Quasiconvex relaxation of multidimensional control problems with integrands f(t, ξ, v)

  • Marcus Wagner (a1)


We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration problem with convex and polyconvex regularization terms.



Hide All
[1] Acerbi, E. and Fusco, N., Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1984) 125145.
[2] Alvarez, L., Weickert, J. and Sánchez, J., Reliable estimation of dense optical flow fields with large displacements. Int. J. Computer Vision 39 (2000) 4156.
[3] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Second edn., Springer, New York etc. (2006).
[4] Ball, J.M. and Murat, F., W 1,p -quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225253.
[5] N. Bourbaki, Éléments de Mathématique, Livre VI : Intégration, Chapitres I–IV. Hermann, Paris, France (1952).
[6] Brokate, M., Pontryagin's principle for control problems in age-dependent population dynamics. J. Math. Biology 23 (1985) 75101.
[7] A. Brøndsted, An Introduction to Convex Polytopes. Springer, New York-Heidelberg-Berlin (1983).
[8] Brune, C., Maurer, H. and Wagner, M., Detection of intensity and motion edges within optical flow via multidimensional control. SIAM J. Imaging Sci. 2 (2009) 11901210.
[9] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Research Notes in Mathematics 207. Longman, Harlow (1989).
[10] Conti, S., Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90 (2008) 1530.
[11] B. Dacorogna, Introduction to the Calculus of Variations. Imperial College Press, London, UK (2004)
[12] B. Dacorogna, Direct Methods in the Calculus of Variations. Second edn., Springer, New York etc. (2008).
[13] Dacorogna, B. and Marcellini, P., General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 137.
[14] Droske, M. and Rumpf, M., A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math. 64 (2004) 668687.
[15] N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory. Wiley-Interscience, New York etc. (1988).
[16] I. Ekeland and R. Témam, Convex Analysis and Variational Problems. Second edn., SIAM, Philadelphia, USA (1999).
[17] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton etc. (1992).
[18] Feichtinger, G., Tragler, G. and Veliov, V.M., Optimality conditions for age-structured control systems. J. Math. Anal. Appl. 288 (2003) 4768.
[19] L. Franek, M. Franek, H. Maurer and M. Wagner, Image restoration and simultaneous edge detection by optimal control methods. BTU Cottbus, Preprint-Reihe Mathematik, Preprint Nr. M-05/2008. Optim. Contr. Appl. Meth. (submitted).
[20] Gallardo, L.A. and Meju, M.A., Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys. Res. Lett. 30 (2003) 1658.
[21] Haber, E. and Modersitzki, J., Intensity gradient based registration and fusion of multi-modal images. Methods Inf. Med. 46 (2007) 292299.
[22] Henn, S. and Witsch, K., A multigrid approach for minimizing a nonlinear functional for digital image matching. Computing 64 (2000) 339348.
[23] Henn, S. and Witsch, K., Iterative multigrid regularization techniques for image matching. SIAM J. Sci. Comput. 23 (2001) 10771093.
[24] Hermosillo, G., Chefd'hotel, C. and Faugeras, O., Variational methods for multimodal image matching. Int. J. Computer Vision 50 (2002) 329343.
[25] Hinterberger, W., Scherzer, O., Schnörr, C. and Weickert, J., Analysis of optical flow models in the framework of the calculus of variations. Num. Funct. Anal. Optim. 23 (2002) 6989.
[26] Kinderlehrer, D. and Pedregal, P., Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115 (1991) 329365.
[27] Marcellini, P. and Sbordone, C., Semicontinuity problems in the calculus of variations. Nonlinear Anal. 4 (1980) 241257.
[28] J. Modersitzki, Numerical Methods for Image Registration. Oxford University Press, Oxford, UK (2004).
[29] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Grundlehren 130. Springer, Berlin-Heidelberg-New York (1966).
[30] S. Pickenhain and M. Wagner, Critical points in relaxed deposit problems, in Calculus of Variations and Optimal Control, Technion 98, Vol. II , A. Ioffe, S. Reich and I. Shafrir Eds., Research Notes in Mathematics 411, Chapman & Hall/CRC Press, Boca Raton etc. (2000) 217–236.
[31] T. Roubíček, Relaxation in Optimization Theory and Variational Calculus. De Gruyter, Berlin-New York (1997).
[32] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge, UK (1993).
[33] Ting, T.W., Elastic-plastic torsion of convex cylindrical bars. J. Math. Mech. 19 (1969) 531551.
[34] Ting, T.W., Elastic-plastic torsion problem III. Arch. Rat. Mech. Anal. 34 (1969) 228244.
[35] M. Wagner, Erweiterungen des mehrdimensionalen Pontrjaginschen Maximumprinzips auf meßbare und beschränkte sowie distributionelle Steuerungen. Ph.D. Thesis, University of Leipzig, Germany (1996).
[36] M. Wagner, Mehrdimensionale Steuerungsprobleme mit quasikonvexen Integranden. Habilitation Thesis, BTU Cottbus, Germany (2006).
[37] M. Wagner, Nonconvex relaxation properties of multidimensional control problems, in Recent Advances in Optimization, A. Seeger Ed., Lecture Notes in Economics and Mathematical Systems 563, Springer, Berlin etc. (2006) 233–250.
[38] Wagner, M., Quasiconvex relaxation of multidimensional control problems. Adv. Math. Sci. Appl. 18 (2008) 305327.
[39] Wagner, M., Jensen's inequality for the lower semicontinuous quasiconvex envelope and relaxation of multidimensional control problems. J. Math. Anal. Appl. 355 (2009) 606619.
[40] Wagner, M., On the lower semicontinuous quasiconvex envelope for unbounded integrands (I). ESAIM: COCV 15 (2009) 68101.
[41] Wagner, M., On the lower semicontinuous quasiconvex envelope for unbounded integrands (II): Representation by generalized controls. J. Convex Anal. 16 (2009) 441472.
[42] Wagner, M., Pontryagin's maximum principle for multidimensional control problems in image processing. J. Optim. Theory Appl. 140 (2009) 543576.
[43] M. Wagner, Elastic/hyperelastic image registration unter Nebenbedingungen als mehrdimensionales Steuerungsproblem. Preprint-Reihe Mathematik, Preprint Nr. M-09/2009, BTU Cottbus, Germany (2009).


Related content

Powered by UNSILO

Quasiconvex relaxation of multidimensional control problems with integrands f(t, ξ, v)

  • Marcus Wagner (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.