Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-vzs5b Total loading time: 14.764 Render date: 2021-04-16T11:44:51.346Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Exact null internal controllability for the heat equation on unbounded convex domains

Published online by Cambridge University Press:  27 January 2014

Viorel Barbu
Affiliation:
Al.I. Cuza University and Octav Mayer Institute of Mathematics (Romanian Academy), Iaşi, Romania. vbarbu41@gmail.com
Get access

Abstract

The liner parabolic equation \hbox{$\frac{\pp y}{\pp t}-\frac12\,\D y+F\cdot\na y={\vec{1}}_{\calo_0}u$}∂y∂t12Δy+F·y=1𝒪0u with Neumann boundary condition on a convex open domain 𝒪 ⊂ ℝd with smooth boundary is exactly null controllable on each finite interval if 𝒪0 is an open subset of 𝒪 which contains a suitable neighbourhood of the recession cone of \hbox{$\ov\calo$}𝒪 . Here, F : ℝd → ℝd is a bounded, C1-continuous function, and F = ∇g, where g is convex and coercive.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2014

Access options

Get access to the full version of this content by using one of the access options below.

References

Aniţa, S. and Barbu, V., Null controllability of nonlinear convective heat equation. ESAIM: COCV 5 (2000) 157173. Google Scholar
Barbu, V., Exact controllability of the superlinear heat equations. Appl. Math. Optim. 42 (2000) 7389. Google Scholar
Barbu, V., Controllability of parabolic and Navier-Stokes equations. Scientiae Mathematicae Japonicae 56 (2002) 143211. Google Scholar
Barbu, V. and Da Prato, G., The Neumann problem on unbounded domains of Rd and stochastic variational inequalities. Commun. Partial Differ. Eq. 11 (2005) 12171248. Google Scholar
Barbu, V. and Da Prato, G., The generator of the transition semigroup corresponding to a stochastic variational inequality. Commun. Partial Differ. Eq. 33 (2008) 13181338. Google Scholar
Bogachev, V.I., Krylov, N.V. and Röckner, M., On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Commun. Partial Differ. Eq. 26 (2001) 1112. Google Scholar
Cepá, E., Multivalued stochastic differential equations. C.R. Acad. Sci. Paris, Ser. 1, Math. 319 (1994) 10751078. Google Scholar
Dubova, A., Fernandez Cara, E. and Burges, M., On the controllability of parabolic systems with a nonlinear term involving state and gradient. SIAM J. Control Optim. 41 (2002) 718819. Google Scholar
Dubova, A., Osses, A. and Puel, J.P., Exact controllability to trajectories for semilinear heat equations with discontinuous coefficients. ESAIM: COCV 8 (2002) 621667. Google Scholar
Fernandez Cara, E. and Guerrero, S., Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 13951446. Google Scholar
E. Fernandez Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, vol. 17 of Annales de l’Institut Henri Poincaré (C) Nonlinear Analysis (2000) 583–616.
A. Fursikov, Imanuvilov and O. Yu, Controllability of Evolution Equations, Lecture Notes #34. Seoul National University Korea (1996).
Lebeau, G. and Robbiano, L., Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Eq. 30 (1995) 335357. Google Scholar
Le Rousseau, J. and Lebeau, G., On Carleman estimates for elliptic and parabolic operators. Applicatiosn to unique continuation and control of parabolic equations. ESAIM: COCV 18 (2012) 712747. Google Scholar
Le Rousseau, J. and Robbiano, L., Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaqces. Inventiones Mathematicae 183 (2011) 245336. Google Scholar
Micu, S. and Zuazua, E., On the lack of null controllability of the heat equation on the half-line. Trans. AMS 353 (2000) 16351659. Google Scholar
Micu, S. and Zuazua, E., On the lack of null controllability of the heat equation on the half-space. Part. Math. 58 (2001) 124. Google Scholar
Miller, L., Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds, Math. Res. Lett. 12 (2005) 3747. Google Scholar
R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, N.Y. (1970).
C. Zalinescu, Convex Analysis in General Vector Spaces. World Scientific Publishing, River Edge, N.Y. (2002).
Zhang, Xu, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proc. of the International Congress of Mathematicians, vol. IV, 3008-3034. Hindustan Book Agency, New Delhi (2010).
X. Zhang and E. Zuazua, On the optimality of the observability inequalities for Kirchoff plate systems with potentials in unbounded domains, in Hyperbolic Prloblems: Theory, Numerics and Applications, edited by S. Benzoni-Gavage and D. Serre. Springer (2008) 233–243.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 18 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Exact null internal controllability for the heat equation on unbounded convex domains
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Exact null internal controllability for the heat equation on unbounded convex domains
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Exact null internal controllability for the heat equation on unbounded convex domains
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *