Skip to main content Accessibility help

A zero–infinity law for well-approximable points in Julia sets

  • RICHARD HILL (a1) and SANJU L. VELANI (a2)


Let T:J \to J be an expanding rational map of the Riemann sphere acting on its Julia set J and f:J\to \mathbb{R} denote a Hölder continuous function satisfying f(x) > \log|T^\prime(x)| for all x in J. Then for any point z_0 in J define the set D_{z_0}(f) of ‘well-approximable’ points to be the set of points in J which lie in the Euclidean ball

B\bigg(y,\exp\bigg(-\sum_{i=0}^{n-1} f(T^iy)\bigg)\bigg)

for infinitely many pairs (y,n) satisfying T^n(y)=z_0. In our 1997 paper, we calculated the Hausdorff dimension of D_{z_0} (f). In the present paper, we shall show that the Hausdorff measure \mathcal{H}^s of this set is either zero or infinite. This is in line with the general philosophy that all ‘naturally’ occurring sets of well-approximable points should have zero or infinite Hausdorff measure.


Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed