Skip to main content Accessibility help

A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems



We investigate how spectral properties of a measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T)$ are reflected in the multiple ergodic averages arising from that system. For certain sequences $a:\mathbb{N}\rightarrow \mathbb{N}$ , we provide natural conditions on the spectrum $\unicode[STIX]{x1D70E}(T)$ such that, for all $f_{1},\ldots ,f_{k}\in L^{\infty }$ ,

$$\begin{eqnarray}\lim _{N\rightarrow \infty }\frac{1}{N}\mathop{\sum }_{n=1}^{N}\mathop{\prod }_{j=1}^{k}T^{ja(n)}f_{j}=\lim _{N\rightarrow \infty }\frac{1}{N}\mathop{\sum }_{n=1}^{N}\mathop{\prod }_{j=1}^{k}T^{jn}f_{j}\end{eqnarray}$$
in $L^{2}$ -norm. In particular, our results apply to infinite arithmetic progressions, $a(n)=qn+r$ , Beatty sequences, $a(n)=\lfloor \unicode[STIX]{x1D703}n+\unicode[STIX]{x1D6FE}\rfloor$ , the sequence of squarefree numbers, $a(n)=q_{n}$ , and the sequence of prime numbers, $a(n)=p_{n}$ . We also obtain a new refinement of Szemerédi’s theorem via Furstenberg’s correspondence principle.



Hide All
[1] Auslander, L., Green, L. and Hahn, F.. Flows on Homogeneous Spaces (Annals of Mathematics Studies, 53) . Princeton University Press, Princeton, NJ, 1963, with the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg.
[2] Bellow, A. and Losert, V.. The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences. Trans. Amer. Math. Soc. 288 (1985), 307345.
[3] Bergelson, V., Host, B. and Kra, B.. Multiple recurrence and nilsequences. Invent. Math. 160 (2005), 261303, with an appendix by Imre Ruzsa.
[4] Besicovitch, A. S.. Almost Periodic Functions. Dover Publications, New York, 1955.
[5] Bohr, H.. Zur theorie der fast periodischen funktionen: I. Eine verallgemeinerung der theorie der fourierreihen. Acta Math. 45 (1925), 29127.
[6] Bohr, H.. Zur Theorie der Fastperiodischen Funktionen: II. Zusammenhang der fastperiodischen Funktionen mit Funktionen von unendlich vielen Variabeln; gleichmässige Approximation durch trigonometrische Summen. Acta Math. 46 (1925), 101214.
[7] Durrett, R.. Probability: Theory and Examples (Cambridge Series in Statistical and Probabilistic Mathematics) . 4th edn. Cambridge University Press, Cambridge, 2010.
[8] Frantzikinakis, N.. The structure of strongly stationary systems. J. Anal. Math. 93 (2004), 359388.
[9] Frantzikinakis, N.. Multiple ergodic averages for three polynomials and applications. Trans. Amer. Math. Soc. 360 (2008), 54355475.
[10] Frantzikinakis, N. and Host, B.. Higher order Fourier analysis of multiplicative functions and applications. J. Amer. Math. Soc. 30 (2017), 67157.
[11] Frantzikinakis, N., Host, B. and Kra, B.. Multiple recurrence and convergence for sequences related to the prime numbers. J. Reine Angew. Math. 611 (2007), 131144.
[12] Frantzikinakis, N., Host, B. and Kra, B.. The polynomial multidimensional Szemerédi theorem along shifted primes. Israel J. Math. 194 (2013), 331348.
[13] Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 149.
[14] Furstenberg, H.. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Analyse Math. 31 (1977), 204256.
[15] Glasner, E.. Ergodic Theory via Joinings (Mathematical Surveys and Monographs, 101) . American Mathematical Society, Providence, RI, 2003.
[16] Gowers, W. T.. A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11 (2001), 465588.
[17] Green, B. and Tao, T.. Linear equations in primes. Ann. of Math. (2) 171 (2010), 17531850.
[18] Green, B. and Tao, T.. The Möbius function is strongly orthogonal to nilsequences. Ann. of Math. (2) 175 (2012), 541566.
[19] Green, B., Tao, T. and Ziegler, T.. An inverse theorem for the Gowers U s+1[N]-norm. Ann. of Math. (2) 176 (2012), 12311372.
[20] Green, L. W.. Spectra of nilflows. Bull. Amer. Math. Soc. 67 (1961), 414415.
[21] Host, B. and Kra, B.. An odd Furstenberg–Szemerédi theorem and quasi-affine systems. J. Anal. Math. 86 (2002), 183220.
[22] Host, B. and Kra, B.. Convergence of polynomial ergodic averages. Israel J. Math. 149 (2005), 119.
[23] Host, B. and Kra, B.. Nonconventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161 (2005), 397488.
[24] Host, B. and Kra, B.. Uniformity seminorms on and applications. J. Anal. Math. 108 (2009), 219276.
[25] Leibman, A.. Multiple recurrence theorem for measure preserving actions of a nilpotent group. Geom. Funct. Anal. 8 (1998), 853931.
[26] Leibman, A.. Pointwise convergence of ergodic averages for polynomial actions of ℤ d by translations on a nilmanifold. Ergod. Th. & Dynam. Sys. 25 (2005), 215225.
[27] Leibman, A.. Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold. Ergod. Th. & Dynam. Sys. 25 (2005), 201213.
[28] Leibman, A.. Rational sub-nilmanifolds of a compact nilmanifold. Ergod. Th. & Dynam. Sys. 26 (2006), 787798.
[29] Leibman, A.. Multiple polynomial correlation sequences and nilsequences. Ergod. Th. & Dynam. Sys. 30 (2010), 841854.
[30] Leibman, A.. Orbit of the diagonal in the power of a nilmanifold. Trans. Amer. Math. Soc. 362 (2010), 16191658.
[31] Lesigne, E.. Sur une nil-variété, les parties minimales associées à une translation sont uniquement ergodiques. Ergod. Th. & Dynam. Sys. 11 (1991), 379391.
[32] Parry, W.. Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math. 91 (1969), 757771.
[33] Parry, W.. Dynamical systems on nilmanifolds. Bull. Lond. Math. Soc. 2 (1970), 3740.
[34] Raghunathan, M. S.. Discrete Subgroups of Lie Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 68) . Springer, New York–Heidelberg, 1972.
[35] Rauzy, G.. Propriétés statistiques de suites arithmétiques (Le Mathématicien, 15, Collection SUP) . Presses Universitaires de France, Paris, 1976.
[36] Ribenboim, P.. The New Book of Prime Number Records. Springer, New York, 1996.
[37] Sun, W.. Multiple recurrence and convergence for certain averages along shifted primes. Ergod. Th. & Dynam. Sys. 35 (2015), 15921609.
[38] Vinogradov, I. M.. The Method of Trigonometrical Sums in the Theory of Numbers. Interscience Publishers, London and New York, 1947, translated, revised and annotated by K. F. Roth and Anne Davenport.
[39] Ziegler, T.. A non-conventional ergodic theorem for a nilsystem. Ergod. Th. & Dynam. Sys. 25 (2005), 13571370.
[40] Ziegler, T.. Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc. 20 (2007), 5397 (electronic).

Related content

Powered by UNSILO

A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.