Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T13:29:28.889Z Has data issue: false hasContentIssue false

Skew product Smale endomorphisms over countable shifts of finite type

Published online by Cambridge University Press:  25 June 2019

EUGEN MIHAILESCU
Affiliation:
Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO 014700, Bucharest, Romania email Eugen.Mihailescu@imar.rowww.imar.ro/∼mihailes
MARIUSZ URBAŃSKI
Affiliation:
Department of Mathematics, University of North Texas, Denton, TX76203-1430, USA email urbanski@unt.eduwww.math.unt.edu/∼urbanski

Abstract

We introduce and study skew product Smale endomorphisms over finitely irreducible shifts with countable alphabets. This case is different from the one with finite alphabets and we develop new methods. In the conformal context we prove that almost all conditional measures of equilibrium states of summable Hölder continuous potentials are exact dimensional and their dimension is equal to the ratio of (global) entropy and Lyapunov exponent. We show that the exact dimensionality of conditional measures on fibers implies global exact dimensionality of the original measure. We then study equilibrium states for skew products over expanding Markov–Rényi transformations and settle the question of exact dimensionality of such measures. We apply our results to skew products over the continued fraction transformation. This allows us to extend and improve the Doeblin–Lenstra conjecture on Diophantine approximation coefficients to a larger class of measures and irrational numbers.

Type
Original Article
Copyright
© Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnsley, M., Demko, S., Elton, J. and Geronimo, J.. Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities. Ann. Inst. H. Poincaré 24 (1988), 367394.Google Scholar
Barreira, L., Pesin, Y. and Schmeling, J.. Dimension and product structure of hyperbolic measures. Ann. of Math. (2) 149 (1999), 755783.CrossRefGoogle Scholar
Bosma, W., Jager, H. and Wiedijk, F.. Some metrical observations on the approximation by continued fractions. Nederl. Akad. Wetensch. Indag. Math. 45 (1983), 281299.10.1016/1385-7258(83)90063-XCrossRefGoogle Scholar
Bowen, R.. Equilibrium States and Ergodic Theory for Anosov Diffeomorphisms (Lecture Notes in Mathematics) . Springer, Berlin, 1975.10.1007/BFb0081279CrossRefGoogle Scholar
Bowen, R.. Hausdorff dimension of quasi-circles. Publ. Math. Inst. Hautes Études Sci. 50 (1980), 1125.10.1007/BF02684767CrossRefGoogle Scholar
Dajani, K., Kraaikamp, C. and Solomyak, B.. The natural extension of the 𝛽-transformation. Acta Math. Hungar. 73 (1996), 97109.CrossRefGoogle Scholar
Doeblin, W. and Fortet, R.. Sur des chaines a liaisons complétes. Bull. Soc. Math. France 65 (1937), 132148.CrossRefGoogle Scholar
Feng, D. J. and Hu, H.. Dimension theory of iterated function systems. Comm. Pure Appl. Math. 62 (2009), 14351500.CrossRefGoogle Scholar
Fornaess, J. E and Mihailescu, E.. Equilibrium measures on saddle sets of holomorphic maps on ℙ2 . Math. Ann. 356 (2013), 14711491.CrossRefGoogle Scholar
Hanus, P., Mauldin, D. and Urbański, M.. Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems. Acta Math. Hungar. 96 (2002), 2798.CrossRefGoogle Scholar
Ionescu Tulcea, C. and Marinescu, G.. Sur certaines chaines a liaisons complétes. C. R. Acad. Sci. Paris 227 (1948), 667669.Google Scholar
Iosifescu, M. and Kraaikamp, C.. Metrical Theory of Continued Fractions. Kluwer Academic, Dordrecht, 2002.10.1007/978-94-015-9940-5CrossRefGoogle Scholar
Manning, A. and McCluskey, H.. Hausdorff dimension for horseshoes. Ergod. Th. & Dynam. Sys. 3 (1983), 251260.Google Scholar
Mauldin, D. and Urbański, M.. Dimensions and measures in infinite iterated function systems. Proc. Lond. Math. Soc. (3) 73 (1996), 105154.CrossRefGoogle Scholar
Mauldin, D. and Urbański, M.. Gibbs states on the symbolic space over an infinite alphabet. Israel J. Math. 125 (2001), 93130.10.1007/BF02773377CrossRefGoogle Scholar
Mauldin, D. and Urbański, M.. Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets. Cambridge University Press, Cambridge, 2003.10.1017/CBO9780511543050CrossRefGoogle Scholar
Mayer, V., Skorulski, B. and Urbański, M.. Random Distance Expanding Mappings, Thermodynamic Formalism, Gibbs Measures, and Fractal Geometry (Lecture Notes in Mathematics, 2036) . Springer, Heidelberg, 2011.CrossRefGoogle Scholar
Mayer, V. and Urbański, M.. Geometric thermodynamical formalism and real analyticity for meromorphic functions of finite order. Ergod. Th. & Dynam. Sys. 28 (2008), 915946.CrossRefGoogle Scholar
Mayer, V. and Urbański, M.. Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order. Mem. Amer. Math. Soc. 203(954) (2010).Google Scholar
Mihailescu, E.. Metric properties of some fractal sets and applications of inverse pressure. Math. Proc. Cambridge Philos. Soc. 148 (2010), 553572.CrossRefGoogle Scholar
Mihailescu, E.. Unstable directions and fractal dimension for skew products with overlaps in fibers. Math. Z. 269 (2011), 733750.CrossRefGoogle Scholar
Mihailescu, E.. On a class of stable conditional measures. Ergod. Th. & Dynam. Sys. 31 (2011), 14991515.CrossRefGoogle Scholar
Mihailescu, E.. Asymptotic distributions of preimages for endomorphisms. Ergod. Th. & Dynam. Sys. 31 (2011), 911935.CrossRefGoogle Scholar
Mihailescu, E.. Local geometry and dynamical behavior on folded basic sets. J. Stat. Phys. 142 (2011), 154167.CrossRefGoogle Scholar
Mihailescu, E.. Approximations of Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets. Discrete Contin. Dyn. Syst. 32(3) (2012), 961975.CrossRefGoogle Scholar
Mihailescu, E.. Equilibrium measures, prehistories distributions and fractal dimensions for endomorphisms. Discrete Contin. Dyn. Syst. 32 (2012), 24852502.CrossRefGoogle Scholar
Mihailescu, E.. On some coding and mixing properties on folded fractals. Monatsh. Math. 167(2) (2012), 241255.10.1007/s00605-011-0347-8CrossRefGoogle Scholar
Mihailescu, E. and Stratmann, B.. Upper estimates for stable dimensions on fractal sets with variable numbers of foldings. Int. Math. Res. Not. IMRN 2014(23) (2014), 64746496.CrossRefGoogle Scholar
Mihailescu, E. and Urbański, M.. Measure-theoretic degrees and topological pressure for non-expanding transformations. J. Funct. Anal. 267(8) (2014), 28232845.10.1016/j.jfa.2014.07.026CrossRefGoogle Scholar
Mihailescu, E. and Urbański, M.. Random countable iterated function systems with overlaps and applications. Adv. Math. 298 (2016), 726758.CrossRefGoogle Scholar
Onicescu, O. and Mihoc, G.. Sur les chaines de variables statistiques. Bull. Sci. Math. 59 (1935), 174192.Google Scholar
Pesin, Y.. Dimension Theory in Dynamical Systems (Chicago Lectures in Mathematics) . University of Chicago Press, Chicago, IL, 1997.CrossRefGoogle Scholar
Pesin, Y. and Senti, S.. Equilibrium measures for maps with inducing schemes. J. Mod. Dyn. 2 (2008), 397430.CrossRefGoogle Scholar
Pollicott, M. and Weiss, H.. Multifractal analysis of Lyapunov exponent for continued fraction and Manneville–Pomeau transformations and applications to diophantine approximation. Comm. Math. Phys. 207 (1999), 145171.10.1007/s002200050722CrossRefGoogle Scholar
Przytycki, F. and Urbański, M.. Conformal Fractals: Ergodic Theory Methods. Cambridge University Press, Cambridge, 2010.10.1017/CBO9781139193184CrossRefGoogle Scholar
Przytycki, F., Urbański, M. and Zdunik, A.. Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps I. Ann. of Math. (2) 130 (1989), 140.CrossRefGoogle Scholar
Przytycki, F., Urbański, M. and Zdunik, A.. Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps II. Studia Math. 97 (1991), 189225.CrossRefGoogle Scholar
Rokhlin, V. A.. Lectures on the theory of entropy of transformations with invariant measures. Russian Math. Surveys 22 (1967), 154.CrossRefGoogle Scholar
Roy, M. and Urbański, M.. Multifractal analysis for conformal graph directed Markov systems. Discrete Contin. Dyn. Syst. 25 (2009), 627650.CrossRefGoogle Scholar
Ruelle, D.. Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press, San Diego, CA, 1989.Google Scholar
Ruelle, D.. Thermodynamic Formalism: The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn. Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
Sarig, O.. Thermodynamic formalism for countable Markov shifts. Ergod. Th. & Dynam. Sys. 19 (1999), 15651593.CrossRefGoogle Scholar
Sarig, O.. Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131(6) (2003), 17511758.CrossRefGoogle Scholar
Schweiger, P.. Ergodic Theory Fibered Systems and Metric Number Theory. Oxford University Press, New York, 1995.Google Scholar
Thaler, M.. Estimates on the invariant densities of endomorphisms with indifferent fixed points. Israel J. Math. 37 (1980), 303314.10.1007/BF02788928CrossRefGoogle Scholar
Urbański, M. and Zdunik, A.. Hausdorff dimension of harmonic measure for self-conformal sets. Adv. Math. 171 (2002), 158.CrossRefGoogle Scholar
Urbański, M. and Zdunik, A.. Real analyticity of Hausdorff dimension of finer Julia sets of exponential family. Ergod. Th. & Dynam. Sys. 24 (2004), 279315.CrossRefGoogle Scholar
Young, L. S.. Dimension, entropy and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 2 (1982), 109124.10.1017/S0143385700009615CrossRefGoogle Scholar