Skip to main content Accessibility help
×
Home

Simple groups of dynamical origin

  • V. NEKRASHEVYCH (a1)

Abstract

We associate with every étale groupoid $\mathfrak{G}$ two normal subgroups $\mathsf{S}(\mathfrak{G})$ and $\mathsf{A}(\mathfrak{G})$ of the topological full group of $\mathfrak{G}$ , which are analogs of the symmetric and alternating groups. We prove that if $\mathfrak{G}$ is a minimal groupoid of germs (e.g., of a group action), then $\mathsf{A}(\mathfrak{G})$ is simple and is contained in every non-trivial normal subgroup of the full group. We show that if $\mathfrak{G}$ is expansive (e.g., is the groupoid of germs of an expansive action of a group), then $\mathsf{A}(\mathfrak{G})$ is finitely generated. We also show that $\mathsf{S}(\mathfrak{G})/\mathsf{A}(\mathfrak{G})$ is a quotient of $H_{0}(\mathfrak{G},\mathbb{Z}/2\mathbb{Z})$ .

Copyright

References

Hide All
[1] Bellissard, J., Herrmann, D. J. L. and Zarrouati, M.. Hulls of aperiodic solids and gap labeling theorems. Directions in Mathematical Quasicrystals (CRM Monograph Series, 13) . Eds. Baake, M. and Moody, R. V.. American Mathematical Society, Providence, RI, 2000, pp. 207258.
[2] Bellissard, J., Julien, A. and Savinien, J.. Tiling groupoids and Bratteli diagrams. Ann. Henri Poincaré 11(1–2) (2010), 6999.
[3] de Brujin, N. G.. Algebraic theory of Penrose’s non-periodic tilings of the plane I. Indag. Math. (N.S.) 43(1) (1981), 3952.
[4] Cannon, J. W., Floyd, W. I. and Parry, W. R.. Introductory notes on Richard Thompson groups. Enseign. Math. 42(2) (1996), 215256.
[5] Chornyi, M., Juschenko, K. and Nekrashevych, V.. On topological full groups of $\mathbb{Z}^{d}$ -actions. Preprint 2016 arXiv:1602.04255.
[6] de Cornulier, Y.. Groupes pleins-topologiques (d’après Matui, Juschenko, Monod,…). Astérisque 361 (2014), 183223, Exp. No. 1064, viii.
[7] D’Angeli, D., Donno, A., Matter, M. and Smirnova-Nagnibeda, T.. Schreier graphs of the basilica group. J. Mod. Dyn. 4(1) (2010), 139177.
[8] Giordano, T., Putnam, I. F. and Skau, C. F.. Full groups of Cantor minimal systems. Israel J. Math. 111 (1999), 285320.
[9] Guba, V. and Sapir, M.. Diagram Groups (Memoirs of the American Mathematical Society, 620) . American Mathematical Society, Providence, RI, 1997.
[10] Haefliger, A.. Foliations and compactly generated pseudogroups. Foliations: Geometry and Dynamics (Warsaw, 2000). World Scientific, River Edge, NJ, 2002, pp. 275295.
[11] Kellendonk, J. and Lawson, M. V.. Tiling semigroups. J. Algebra 224(1) (2000), 140150.
[12] Kellendonk, J. and Putnam, I. F.. Tilings, C -algebras, and K-theory. Directions in Mathematical Quasicrystals (CRM Monograph Series, 13) . Ed. Baake, M. et al. . American Mathematical Society, Providence, RI, 2000, pp. 177206.
[13] Krieger, W.. On a dimension for a class of homeomorphism groups. Math. Ann. 252(2) (1979–1980), 8795.
[14] Lavrenyuk, Y. and Nekrashevych, V.. On classification of inductive limits of direct products of alternating groups. J. Lond. Math. Soc. 75(1) (2007), 146162.
[15] Leinen, F. and Puglisi, O.. Diagonal limits of finite alternating groups: confined subgroups, ideals, and positive defined functions. Illinois J. Math. 47(1–2) (2003), 345360.
[16] Leinen, F. and Puglisi, O.. Some results concerning simple locally finite groups of 1-type. J. Algebra 287 (2005), 3251.
[17] Lodha, Y. and Moore, J. T.. A nonamenable finitely presented group of piecewise projective homeomorphisms. Groups Geom. Dyn. 10(1) (2016), 177200.
[18] Matui, H.. Some remarks on topological full groups of Cantor minimal systems. Internat. J. Math. 17(2) (2006), 231251.
[19] Matui, H.. Homology and topological full groups of étale groupoids on totally disconnected spaces. Proc. Lond. Math. Soc. (3) 104(1) (2012), 2756.
[20] Matui, H.. Topological full groups of one-sided shifts of finite type. J. reine angew. Math. 705 (2015), 3584.
[21] Matui, H.. Étale groupoids arising from products of shifts of finite type. Adv. Math. 303 (2016), 502548.
[22] Medynets, K.. Reconstruction of orbits of Cantor systems from full groups. Bull. Lond. Math. Soc. 43(6) (2011), 11041110.
[23] Monod, N.. Groups of piecewise projective homeomorphisms. Proc. Natl. Acad. Sci. USA 110(12) (2013), 45244527.
[24] Nekrashevych, V.. Cuntz–Pimsner algebras of group actions. J. Operator Theory 52(2) (2004), 223249.
[25] Nekrashevych, V.. Finitely presented groups associated with expanding maps. Preprint 2013arXiv:1312.5654, to appear.
[26] Nekrashevych, V.. Hyperbolic groupoids and duality. Mem. Amer. Math. Soc. 237(1122) (2015), 108 pp.
[27] Nekrashevych, V.. Growth of étale groupoids and simple algebras. Internat. J. Algebra Comput. 26(2) (2016), 375397.
[28] Rubin, M.. On the reconstruction of topological spaces from their groups of homeomorphisms. Trans. Amer. Math. Soc. 312(2) (1989), 487538.

Simple groups of dynamical origin

  • V. NEKRASHEVYCH (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed