Skip to main content Accessibility help
×
Home

Ruelle operator theorem for non-expansive systems

  • YUNPING JIANG (a1) (a2) and YUAN-LING YE (a3)

Abstract

The Ruelle operator theorem has been studied extensively both in dynamical systems and iterated function systems. In this paper we study the Ruelle operator theorem for non-expansive systems. Our theorems give some sufficient conditions for the Ruelle operator theorem to be held for a non-expansive system.

Copyright

References

Hide All
[1]Baladi, V., Jiang, Y. P. and Lanford III, O. E.. Transfer operators acting on Zygmund functions. Trans. Amer. Math. Soc. 348 (1996), 15991615.
[2]Barnsley, M. F., Demko, S. G., Elton, J. H. and Geronimo, J. S.. Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities. Ann. Inst. Henri Poincaré 24 (1988), 367394.
[3]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Berlin, 1975.
[4]Dunford, N. and Schwartz, J. T.. Linear Operators. Part I. Wiley-Interscience, New York, 1958.
[5]Fan, A. H.. A proof of the Ruelle operator theorem. Rev. Math. Phys. 7 (1995), 12411247.
[6]Fan, A. H. and Jiang, Y. P.. On Ruelle–Perron–Frobenius operators I. Ruelle Theorem. Commun. Math. Phys. 223 (2001), 125141.
[7]Fan, A. H. and Jiang, Y. P.. On Ruelle-Perron-Frobenius operators II. Convergence speeds. Commun. Math. Phys. 223 (2001), 143159.
[8]Fan, A. H. and Lau, K. S.. Iterated function system and Ruelle operator. J. Math. Anal. Appl. 231 (1999), 319344.
[9]Hata, M.. On the structure of self-similar sets. Japan J. Appl. Math. 2 (1985), 381414.
[10]Hennion, H.. Sur un théorèm spectral et son application aux noyaux lipchitziens. Proc. Amer. Math. Soc. 118 (1993), 627634.
[11]Hutchinson, J. E.. Fractal and self-similarity. Indian Univ. Math. J. 30 (1981), 713747.
[12]Jiang, Y.. A proof of existence and simplicity of a maximal eigenvalue for Ruelle–Perron–Frobenius operators. Lett. Math. Phys. 48(3) (1999), 211219.
[13]Jiang, Y. and Maume-Deschamps, V.. RPF operators for non-Hölder potentials on an arbitrary metric space, Unpublished Note.
[14]Lasota, A. and Yorke, J. A.. On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973), 481488.
[15]Lau, K. S. and Ye, Y. L.. Ruelle operator with nonexpansive IFS. Studia Math. 148 (2001), 143169.
[16]Liverani, C., Saussol, B. and Vaienti, S.. A probabilistic approach to intermittency. Ergod. Th. & Dynam. Sys. 19 (1999), 671685.
[17]Mauldin, R. D. and Urbański, M.. Parabolic iterated function systems. Ergod. Th. & Dynam. Sys. 20 (2000), 14231448.
[18]Nussbaum, R. D.. The radius of the essential spectrum. Duke Math. J. 37 (1970), 473478.
[19]Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187/188 (1990), 1268.
[20]Pomeau, Y. and Manneville, P.. Intermittent transition to turbulence in dissipative dynamical systems. Comm. Math. Phys. 74(2) (1980), 189197.
[21]Prellberg, T. and Slawny, J.. Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions. J. Statist. Phys. 66 (1991), 503514.
[22]Ruelle, D.. Statical mechanics of a one-dimensional lattice gas. Commun. Math. Phys. 9 (1968), 267278.
[23]Rugh, H. H.. Intermittency and regularized Fredholm determinants. Invent. Math. 135(1) (1999), 124.
[24]Urbański, M.. Parabolic Cantor sets. Fund. Math. 151 (1996), 241277.
[25]Walters, P.. Ruelle’s operator theorem and g-measure. Trans. Amer. Math. Soc. 214 (1975), 375387.
[26]Walters, P.. Convergence of the Ruelle operator for a function satisfying Bowen’s condition. Trans. Amer. Math. Soc. 353 (2001), 327347.
[27]Ye, Y. L.. Decay of correlations for weakly expansive dynamical systems. Nonlinearity 17 (2004), 13771391.
[28]Ye, Y. L.. Non-hyperbolic dynamical systems on [0, 1]. Preprint, 2008.
[29]Young, L. S.. Recurrence times and rates of mixing. Israel J. Math. 110 (1999), 153188.
[30]Yuri, M.. Invariant measures for certain multi-dimensional maps. Nonlinearity 7 (1994), 10931124.

Ruelle operator theorem for non-expansive systems

  • YUNPING JIANG (a1) (a2) and YUAN-LING YE (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed