Skip to main content Accessibility help

Relativization of sensitivity in minimal systems

  • TAO YU (a1) and XIAOMIN ZHOU (a2)


Let $\unicode[STIX]{x1D70B}:(X,T)\rightarrow (Y,S)$ be an extension between minimal systems; we consider its relative sensitivity. We obtain that $\unicode[STIX]{x1D70B}$ is relatively $n$ -sensitive if and only if the relative $n$ -regionally proximal relation contains a point whose coordinates are distinct; and the structure of $\unicode[STIX]{x1D70B}$ which is relatively $n$ -sensitive but not relatively $(n+1)$ -sensitive is determined. Let ${\mathcal{F}}_{t}$ be the families consisting of thick sets. We introduce notions of relative block ${\mathcal{F}}_{t}$ -sensitivity and relatively strong ${\mathcal{F}}_{t}$ -sensitivity. Let $\unicode[STIX]{x1D70B}:(X,T)\rightarrow (Y,S)$ be an extension between minimal systems. Then the following Auslander–Yorke type dichotomy theorems are obtained: (1)  $\unicode[STIX]{x1D70B}$ is either relatively block ${\mathcal{F}}_{t}$ -sensitive or $\unicode[STIX]{x1D719}:(X,T)\rightarrow (X_{\text{eq}}^{\unicode[STIX]{x1D70B}},T_{\text{eq}})$ is a proximal extension where $(X_{\text{eq}}^{\unicode[STIX]{x1D70B}},T_{\text{eq}})\rightarrow (Y,S)$ is the maximal equicontinuous factor of $\unicode[STIX]{x1D70B}$ . (2)  $\unicode[STIX]{x1D70B}$ is either relatively strongly ${\mathcal{F}}_{t}$ -sensitive or $\unicode[STIX]{x1D719}:(X,T)\rightarrow (X_{d}^{\unicode[STIX]{x1D70B}},T_{d})$ is a proximal extension where $(X_{d}^{\unicode[STIX]{x1D70B}},T_{d})\rightarrow (Y,S)$ is the maximal distal factor of $\unicode[STIX]{x1D70B}$ .



Hide All
[1] Auslander, J.. Minimal Flows and Their Extensions (North-Holland Mathematics Studies 153) . Elsevier, Amsterdam, 1988.
[2] Auslander, J. and Horelick, B.. Regular minimal sets. II. The proximally equicontinuous case. Compos. Math. 22 (1970), 203214.
[3] Auslander, J. and Yorke, J. A.. Interval maps, factors of maps, and chaos. Tôhoku Math. J. (2) 32(2) (1980), 177188.
[4] Ellis, R., Glasner, S. and Shapiro, L.. Proximal-isometric flows. Adv. Math. 17 (1975), 213260.
[5] Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory (M. B. Porter Lectures) . Princeton University Press, Princeton, NJ, 1981.
[6] García-Ramos, F., Li, J. and Zhang, R.. When is a dynamical system mean sensitive. Preprint, 2017,arXiv:1708.01987. Ergod. Th. & Dynam. Sys. to appear.
[7] Glasner, E. and Weiss, B.. Sensitive dependence on initial conditions. Nonlinearity 6(6) (1993), 10671075.
[8] Huang, W., Khilko, D., Kolyada, S. and Zhang, G.. Dynamical compactness and sensitivity. J. Differential Equation 260(9) (2016), 68006827.
[9] Huang, W., Kolyada, S. and Zhang, G.. Analogues of Auslander-Yorke theorems for multi-sensitivity. Ergod. Th. & Dynam. Sys. 38(2) (2018), 651665.
[10] Huang, W., Lu, P. and Ye, X.. Measure-theoretical sensitivity and equicontinuity. Israel J. Math. 183 (2011), 233283.
[11] Li, J.. Measure-theoretic sensitivity via finite partitions. Nonlinearity 29(7) (2016), 21332144.
[12] Li, J., Tu, S. and Ye, X.. Mean equicontinuity and mean sensitivity. Ergod. Th. & Dynam. Sys. 35(8) (2015), 25872612.
[13] Liu, K. and Zhou, X.. Auslander-Yorkes type dichotomy theorems for stronger version $r$ -sensitivity, preprint.
[14] Maass, A. and Shao, S.. Structure of bounded topological-sequence-entropy minimal systems. J. Lond. Math. Soc. (2) 76(3) (2007), 702718.
[15] McMahon, D. C.. Relativized weak disjointness and relatively invariant measures. Trans. Amer. Math. Soc. 236 (1978), 225237.
[16] Subrahmonian Moothathu, T. K.. Stronger forms of sensitivity for dynamical systems. Nonlinearity 20(9) (2007), 21152126.
[17] Ruelle, D.. Dynamical Systems with Turbulent Behavior, Mathematical Problems in Theoretical Physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977) (Lecture Notes in Physics, 80) . Springer, Berlin, 1978, pp. 341360.
[18] Shao, S., Ye, X. and Zhang, R.. Sensitivity and regionally proximal relation in minimal systems. Sci. China 51(6) (2008), 987994.
[19] de Vries, J.. Elements of Topological Dynamics. Kluwer Academic Publishers, Dordrecht, 1993.
[20] Xiong, J.. Chaos in topological transitive systems. Sci. China 48(7) (2005), 929939.
[21] Ye, X. and Yu, T.. Sensitivity, proximal extension and high order almost automorphy. Trans. Amer. Math. Soc. 370(5) (2018), 36393662.
[22] Ye, X. and Zhang, R.. On sensitive sets in topological dynamics. Nonlinearity 21(7) (2008), 16011620.
[23] Yu, T.. Measurable sensitivity via Furstenberg families. Discrete Contin. Dyn. Syst. 37(8) (2017), 45434563.
[24] Zhang, G.. Relativization of complexity and sensitivity. Ergod. Th. & Dynam. Sys. 27(4) (2007), 13491371.
[25] Zou, Y.. Stronger version sensitivity, almost finite to one extension and maximal pattern entropy. Commun. Math. Stat. 5(2) (2017), 123139.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed