[1]
Ban, J. C., Chang, C. H. and Lin, S. S.. On the structure of multi-layer cellular neural networks. J. Differential Equations
252(8) (2012), 4563–4597.

[2]
Ban, J. C., Chang, C. H., Lin, S. S. and Lin, Y. H.. Spatial complexity in multi-layer cellular neural networks. J. Differential Equations
246 (2009), 552–580.

[3]
Ban, J. C., Hu, W. G., Lin, S. S. and Lin, Y. H.. Verification of mixing properties in two-dimensional shifts of finite type. *Preprint*, 2011, arXiv:1112.2471. [4]
Ban, J. C., Hu, W. G., Lin, S. S. and Lin, Y. H.. Zeta functions for two-dimensional shifts of finite type. Mem. Amer. Math. Soc.
221(1037) (2013).

[5]
Ban, J. C. and Lin, S. S.. Patterns generation and transition matrices in multi-dimensional lattice models. Discrete Contin. Dyn. Syst.
13(3) (2005), 637–658.

[6]
Ban, J. C., Lin, S. S. and Lin, Y. H.. Patterns generation and spatial entropy in two dimensional lattice models. Asian J. Math.
11(3) (2007), 497–534.

[7]
Ban, J. C., Lin, S. S. and Lin, Y. H.. Three-dimensional cellular neural networks and pattern generation problems. Intl J. Bifur. Chaos
18(4) (2008), 957–984.

[8]
Bowen, R.. Topological entropy for noncompact sets. Trans. Amer. Math. Soc.
184 (1973), 125–136.

[9]
Boyle, M., Pavlov, R. and Schraudner, M.. Multidimensional sofic shifts without separation and their factors. Trans. Amer. Math. Soc.
362 (2010), 4617–4653.

[10]
Burton, R. and Steif, J. E.. Non-uniqueness of measures of maximal entropy for subshifts of finite type. Ergod. Th. & Dynam. Sys.
14(2) (1994), 213–235.

[11]
Burton, R. and Steif, J. E.. New results on measures of maximal entropy. Israel J. Math.
89 (1995), 275–300.

[12]
Chow, S. N., Mallet-Paret, J. and Van Vleck, E. S.. Pattern formation and spatial chaos in spatially discrete evolution equations. Random Comput. Dynam.
4 (1996), 109–178.

[13]
Fan, A. H.. Some aspects of multifractal analysis. Geometry and Analysis of Fractals (Hong Kong, December 2012)
*(Springer Proceedings in Mathematics & Statistics, 88)*
. Springer, Berlin, 2014, pp. 115–145.

[14]
Fan, A. H., Liao, L. M. and Ma, J. H.. Level sets of multiple ergodic averages. Monatsh. Math.
168 (2012), 17–26.

[15]
Fan, A. H., Schmeling, J. and Wu, M.. Multifractal analysis of multiple ergodic averages. C. R. Math. Acad. Sci. Paris
349 (2011), 961–964.

[16]
Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory
1 (1967), 1–49.

[17]
Grünbaum, B. and Shephard, G. C.. Tilings and Patterns. W. H. Freeman, New York, 1986.

[18]
Häggström, O.. A subshift of finite type that is equivalent to the Ising model. Ergod. Th. & Dynam. Sys.
15 (1995), 543–556.

[19]
Haydn, N. T. A. and Ruelle, D.. Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification. Commun. Math. Phys.
148 (1992), 155–167.

[20]
Hochman, M. and Meyerovitch, T.. A characterization of the entropies of multidimensional shifts of finite type. Ann. Math.
171 (2010), 2011–2038.

[21]
Hu, W. G. and Lin, S. S.. Zeta functions for higher-dimensional shifts of finite type. Intl J. Bifur. Chaos
19(11) (2009), 3671–3689.

[22]
Hu, W. G. and Lin, S. S.. Nonemptiness problems of plane square tiling with two colors. Proc. Amer. Math. Soc.
139 (2011), 1045–1059.

[23]
Host, B. and Kra, B.. Nonconventional ergodic averages and nilmanifolds. Ann. of Math. (2)
161 (2005), 397–488.

[24]
Juang, J. and Lin, S. S.. Cellular neural networks: mosaic pattern and spatial chaos. SIAM J. Appl. Math.
60(3) (2000), 891–915.

[25]
Kenyon, R., Peres, Y. and Solomyak, B.. Hausdorff dimension of the multiplicative golden mean shift. C. R. Math. Acad. Sci. Paris
349 (2011), 625–628.

[26]
Kenyon, R., Peres, Y. and Solomyak, B.. Hausdorff dimension for fractals invariant under the multiplicative integers. Ergod. Th. & Dynam. Sys.
32 (2012), 1567–1584.

[27]
Lightwood, S. J.. Morphisms from non-periodic ℤ^{2} subshifts I: Constructing embeddings from homomorphisms. Ergod. Th. & Dynam. Sys.
23 (2003), 587–609.

[28]
Lightwood, S. J.. Morphisms from non-periodic ℤ^{2} subshifts II: Constructing homomorphisms to square-filling mixing shifts of finite type. Ergod. Th. & Dynam. Sys.
24 (2004), 1227–1260.

[29]
Lin, S. S. and Yang, T. S.. On the spatial entropy and patterns of two-dimensional cellular neural networks. Intl J. Bifur. Chaos
12 (2002), 115–128.

[30]
Lind, D.. A Zeta Function for ℤ^{
d
}-Actions
*(London Mathematical Society Lecture Note Series, 228)*
. Cambridge University Press, Cambridge, 1996, pp. 433–450.

[31]
Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.

[32]
Markley, N. G. and Paul, M. E.. Maximal Measures and Entropy for ℤ^{𝜈} Subshifts of Finite Type. Classical Mechanics and Dynamical Systems
*(Lecture Notes in Pure and Appl. Math., 70)*
. Eds. Devaney, R. L. and Nitecki, Z. H.. Marcel Dekker, New York, 1979, pp. 135–157.

[33]
Peres, Y., Schmeling, J., Seuret, S. and Solomyak, B.. Dimensions of some fractals defined via the semigroup generated by 2 and 3. Israel J. Math.
199 (2014), 687–709.

[34]
Peres, Y. and Solomyak, B.. Dimension spectrum for a nonconventional ergodic average. Real Anal. Exchange
37 (2012), 375–388.

[35]
Pesin, Y.. Dimension Theory in Dynamical Systems: Contemporary Views and Applications. University of Chicago Press, Chicago, 2008.

[36]
Pesin, Y. and Weiss, H.. The multifractal analysis of Birkhoff averages and large deviation. Global Analysis of Dynamical Systems. Institute of Physics, Bristol, 2001, pp. 419–431.

[37]
Quas, A. N. and Trow, P. B.. Subshifts of multidimensional shifts of finite type. Ergod. Th. & Dynam. Sys.
20 (2000), 859–874.

[38]
Ruelle, D.. Thermodynamic Formalism
*(Encyclopedia of Mathematics and its Applications, 5)*
. Addison-Wesley, Reading, MA, 1978.

[39]
Sloane, N. J. A. and Plouffe, S.. The Encyclopedia of Integer Sequences. Academic Press, New York, 1995.

[40]
Ward, T.. Automorphisms of ℤ^{
d
}-subshifts of finite type. Indag. Math. (N.S.)
5(4) (1994), 495–504.

[41]
Ward, T.. Zeta functions for higher-dimensional actions. *Preprint*, University of East Anglia, March, 1994.