[BaHLR12]
Brownlowe, N., an Huef, A., Laca, M. and Raeburn, I.. Boundary quotients of the Toeplitz algebra of the affine semigroup over the natural numbers. Ergod. Th. & Dynam. Sys.
32(1) (2012), 35–62.

[Bar]
Barlak, S.. On the spectral sequence associated with the Baum–Connes conjecture for
$\mathbb{Z}^{n}$
. *Preprint*, 2015, arXiv:1504.03298v2. [BaSz]
Barlak, S. and Szabó, G.. Sequentially split
$\ast$
-homomorphisms between
$C^{\ast }$
-algebras. *Preprint*, 2015, arXiv:1510.04555v2. [BD75]
Bunce, J. W. and Deddens, J. A.. A family of simple *C*
^{∗} -algebras related to weighted shift operators. J. Funct. Anal.
19 (1975), 13–24.

[BLS]
Brownlowe, N., Larsen, N. S. and Stammeier, N..
$C^{\ast }$
-algebras of algebraic dynamical systems and right LCM semigroups. *Preprint*, 2015, arXiv:1503.01599v1. [BLS16]
Brownlowe, N., Larsen, N. S. and Stammeier, N.. On *C*
^{∗} -algebras associated to right LCM semigroups. Trans. Amer. Math. Soc. published online 9 March 2016, doi:10.1090/tran/6638 (to appear in print). [BRRW14]
Brownlowe, N., Ramagge, J., Robertson, D. and Whittaker, M. F.. Zappa–Szép products of semigroups and their *C*
^{∗} -algebras. J. Funct. Anal.
266(6) (2014), 3937–3967.

[BrSt]
Brownlowe, N. and Stammeier, N.. The boundary quotient for algebraic dynamical systems. J. Math. Anal. Appl.
438(2) (2016), 772–789.

[CL07]
Crisp, J. and Laca, M.. Boundary quotients and ideals of Toeplitz *C*
^{∗} -algebras of Artin groups. J. Funct. Anal.
242(1) (2007), 127–156.

[CL11]
Cuntz, J. and Li, X..
*C*
^{∗} -algebras associated with integral domains and crossed products by actions on adele spaces. J. Noncommut. Geom.
5(1) (2011), 1–37.

[Com84]
Combes, F.. Crossed products and Morita equivalence. Proc. Lond. Math. Soc. (3)
49(2) (1984), 289–306.

[Cun08]
Cuntz, J..
*C*
^{∗} -algebras associated with the *ax* + *b*-semigroup over ℕ.
*K*-theory and Noncommutative Geometry
*(EMS Series of Congress Reports)*
. European Mathematical Society, Zürich, 2008, pp. 201–215.

[Cun81]
Cuntz, J.. A class of *C*
^{∗} -algebras and topological Markov chains II. Reducible chains and the Ext-functor for *C*
^{∗} -algebras. Invent. Math.
63 (1981), 25–40.

[CV13]
Cuntz, J. and Vershik, A..
*C*
^{∗} -algebras associated with endomorphisms and polymorphisms of compact abelian groups. Comm. Math. Phys.
321(1) (2013), 157–179.

[End]
Enders, D.. Semiprojectivity for Kirchberg algebras, *Preprint*, 2015, arXiv:1507.06091v1. [Eva08]
Evans, D. G.. On the *K*-theory of higher rank graph *C*
^{∗} -algebras. New York J. Math.
14 (2008), 1–31.

[FS02]
Fowler, N. J. and Sims, A.. Product systems over right-angled Artin semigroups. Trans. Amer. Math. Soc.
354(4) (2002), 1487–1509.

[Gli60]
Glimm, J. G.. On a certain class of operator algebras. Trans. Amer. Math. Soc.
95 (1960), 318–340.

[Hir02]
Hirshberg, I.. On *C*
^{∗} -algebras associated to certain endomorphisms of discrete groups. New York J. Math.
8 (2002), 99–109.

[HR79]
Hewitt, E. and Ross, K. A.. Abstract Harmonic Analysis. Vol. I
*(Grundlehren der Mathematischen Wissenschaften, 115)*
, 2nd edn. Springer, Berlin–New York, 1979.

[Kas88]
Kasparov, G.. Equivariant *KK*-theory and the Novikov conjecture. Invent. Math.
91(1) (1988), 147–201.

[Kat08]
Katsura, T.. A class of *C*
^{∗} -algebras generalizing both graph algebras and homeomorphism *C*
^{∗} -algebras. IV. Pure infiniteness. J. Funct. Anal.
254(5) (2008), 1161–1187.

[Kir]
Kirchberg, E.. The Classification of Purely Infinite *C*
^{∗} -algebras Using Kasparov’s Theory
*(Fields Institute Communications)*
. American Mathematical Society, Providence, RI, to appear.

[KOQ14]
Kaliszewski, S., Omland, T. and Quigg, J.. Cuntz–Li algebras from *a*-adic numbers. Rev. Roumaine Math. Pures Appl.
59(3) (2014), 331–370.

[KP00]
Kumjian, A. and Pask, D.. Higher rank graph *C*
^{∗} -algebras. New York J. Math.
6 (2000), 1–20.

[Lac00]
Laca, M.. From endomorphisms to automorphisms and back: dilations and full corners. J. Lond. Math. Soc. (2)
61(3) (2000), 893–904.

[Li12]
Li, X.. Semigroup *C*
^{∗} -algebras and amenability of semigroups. J. Funct. Anal.
262(10) (2012), 4302–4340.

[LL12]
Larsen, N. S. and Li, X.. The 2-adic ring *C*
^{∗} -algebra of the integers and its representations. J. Funct. Anal.
262(4) (2012), 1392–1426.

[LN16]
Li, X. and Norling, M. D.. Independent resolutions for totally disconnected dynamical systems II: *C*
^{∗} -algebraic case. J. Operator Theory
75(1) (2016), 163–193.

[Lor97]
Loring, T. A.. Lifting Solutions to Perturbing Problems in *C*
^{∗} -algebras
*(Fields Institute Monographs, 8)*
. American Mathematical Society, Providence, RI, 1997.

[LR96]
Laca, M. and Raeburn, I.. Semigroup crossed products and the Toeplitz algebras of nonabelian groups. J. Funct. Anal.
139(2) (1996), 415–440.

[Mas52]
Massey, W. S.. Exact couples in algebraic topology. I, II. Ann. of Math. (2)
56 (1952), 363–396.

[Mas53]
Massey, W. S.. Exact couples in algebraic topology. III, IV, V. Ann. of Math. (2)
57 (1953), 248–286.

[Nic92]
Nica, A..
*C*
^{∗} -algebras generated by isometries and Wiener–Hopf operators. J. Operator Theory
27(1) (1992), 17–52.

[Oml13]
Omland, T..
*C*
^{∗} -algebras associated with *a*-adic numbers. Operator Algebra and Dynamics
*(Springer Proceedings in Mathematics and Statistics, 58)*
. Springer, Heidelberg, 2013, pp. 223–238.

[Pas81]
Paschke, W. L..
*K*-theory for actions of the circle group on *C*
^{∗} -algebras. J. Operator Theory
6(1) (1981), 125–133.

[Phi00]
Phillips, N. C.. A classification theorem for nuclear purely infinite simple *C*
^{∗} -algebras. Doc. Math.
5 (2000), 49–114.

[PV80]
Pimsner, M. V. and Voiculescu, D.-V.. Exact sequences for *K*-groups and Ext-groups of certain cross-product *C*
^{∗} -algebras. J. Operator Theory
4(1) (1980), 93–118.

[Rør02]
Rørdam, M.. Classification of nuclear, simple *C*
^{∗} -algebras. Classification of Nuclear *C*
^{∗} -algebras. Entropy in Operator Algebras
*(Encyclopaedia of Mathematical Sciences, 126)*
. Springer, Berlin, 2002, pp. 1–145.

[RS04]
Raeburn, I. and Szymański, W.. Cuntz–Krieger algebras of infinite graphs and matrices. Trans. Amer. Math. Soc.
356(1) (2004), 39–59.

[RosSch87]
Rosenberg, J. and Schochet, C.. The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized *K*-functor. Duke Math. J.
55(2) (1987), 431–474.

[SB09]
Savinien, J. and Bellissard, J.. A spectral sequence for the *K*-theory of tiling spaces. Ergod. Th. & Dynam. Sys.
29(3) (2009), 997–1031.

[Sch81]
Schochet, C. L.. Topological methods for *C*
^{∗} -algebras. I. Spectral sequences. Pacific J. Math.
96(1) (1981), 193–211.

[Sta]
Stammeier, N.. A boundary quotient diagram for right LCM semigroups. *Preprint*, 2016, arXiv:1604.03172. [Sta15]
Stammeier, N.. On *C*
^{∗} -algebras of irreversible algebraic dynamical systems. J. Funct. Anal.
269(4) (2015), 1136–1179.

[Wil07]
Williams, D. P.. Crossed Products of *C*
^{∗} -algebras
*(Mathematical Surveys and Monographs, 134)*
. American Mathematical Society, Providence, RI, 2007.

[Zha92]
Zhang, S.. Certain *C*
^{∗} -algebras with real rank zero and their corona and multiplier algebras. I. Pacific J. Math.
155(1) (1992), 169–197.