Skip to main content Accessibility help

On the $K$ -theory of $C^{\ast }$ -algebras arising from integral dynamics



We investigate the $K$ -theory of unital UCT Kirchberg algebras ${\mathcal{Q}}_{S}$ arising from families $S$ of relatively prime numbers. It is shown that $K_{\ast }({\mathcal{Q}}_{S})$ is the direct sum of a free abelian group and a torsion group, each of which is realized by another distinct $C^{\ast }$ -algebra naturally associated to $S$ . The $C^{\ast }$ -algebra representing the torsion part is identified with a natural subalgebra ${\mathcal{A}}_{S}$ of ${\mathcal{Q}}_{S}$ . For the $K$ -theory of ${\mathcal{Q}}_{S}$ , the cardinality of $S$ determines the free part and is also relevant for the torsion part, for which the greatest common divisor $g_{S}$ of $\{p-1:p\in S\}$ plays a central role as well. In the case where $|S|\leq 2$ or $g_{S}=1$ we obtain a complete classification for ${\mathcal{Q}}_{S}$ . Our results support the conjecture that ${\mathcal{A}}_{S}$ coincides with $\otimes _{p\in S}{\mathcal{O}}_{p}$ . This would lead to a complete classification of ${\mathcal{Q}}_{S}$ , and is related to a conjecture about $k$ -graphs.



Hide All
[BaHLR12] Brownlowe, N., an Huef, A., Laca, M. and Raeburn, I.. Boundary quotients of the Toeplitz algebra of the affine semigroup over the natural numbers. Ergod. Th. & Dynam. Sys. 32(1) (2012), 3562.
[Bar] Barlak, S.. On the spectral sequence associated with the Baum–Connes conjecture for $\mathbb{Z}^{n}$ . Preprint, 2015, arXiv:1504.03298v2.
[BaSz] Barlak, S. and Szabó, G.. Sequentially split $\ast$ -homomorphisms between $C^{\ast }$ -algebras. Preprint, 2015, arXiv:1510.04555v2.
[BD75] Bunce, J. W. and Deddens, J. A.. A family of simple C -algebras related to weighted shift operators. J. Funct. Anal. 19 (1975), 1324.
[BLS] Brownlowe, N., Larsen, N. S. and Stammeier, N.. $C^{\ast }$ -algebras of algebraic dynamical systems and right LCM semigroups. Preprint, 2015, arXiv:1503.01599v1.
[BLS16] Brownlowe, N., Larsen, N. S. and Stammeier, N.. On C -algebras associated to right LCM semigroups. Trans. Amer. Math. Soc. published online 9 March 2016, doi:10.1090/tran/6638 (to appear in print).
[BRRW14] Brownlowe, N., Ramagge, J., Robertson, D. and Whittaker, M. F.. Zappa–Szép products of semigroups and their C -algebras. J. Funct. Anal. 266(6) (2014), 39373967.
[BrSt] Brownlowe, N. and Stammeier, N.. The boundary quotient for algebraic dynamical systems. J. Math. Anal. Appl. 438(2) (2016), 772789.
[CL07] Crisp, J. and Laca, M.. Boundary quotients and ideals of Toeplitz C -algebras of Artin groups. J. Funct. Anal. 242(1) (2007), 127156.
[CL11] Cuntz, J. and Li, X.. C -algebras associated with integral domains and crossed products by actions on adele spaces. J. Noncommut. Geom. 5(1) (2011), 137.
[Com84] Combes, F.. Crossed products and Morita equivalence. Proc. Lond. Math. Soc. (3) 49(2) (1984), 289306.
[Cun08] Cuntz, J.. C -algebras associated with the ax + b-semigroup over ℕ. K-theory and Noncommutative Geometry (EMS Series of Congress Reports) . European Mathematical Society, Zürich, 2008, pp. 201215.
[Cun81] Cuntz, J.. A class of C -algebras and topological Markov chains II. Reducible chains and the Ext-functor for C -algebras. Invent. Math. 63 (1981), 2540.
[CV13] Cuntz, J. and Vershik, A.. C -algebras associated with endomorphisms and polymorphisms of compact abelian groups. Comm. Math. Phys. 321(1) (2013), 157179.
[End] Enders, D.. Semiprojectivity for Kirchberg algebras, Preprint, 2015, arXiv:1507.06091v1.
[Eva08] Evans, D. G.. On the K-theory of higher rank graph C -algebras. New York J. Math. 14 (2008), 131.
[FS02] Fowler, N. J. and Sims, A.. Product systems over right-angled Artin semigroups. Trans. Amer. Math. Soc. 354(4) (2002), 14871509.
[Gli60] Glimm, J. G.. On a certain class of operator algebras. Trans. Amer. Math. Soc. 95 (1960), 318340.
[Hir02] Hirshberg, I.. On C -algebras associated to certain endomorphisms of discrete groups. New York J. Math. 8 (2002), 99109.
[HR79] Hewitt, E. and Ross, K. A.. Abstract Harmonic Analysis. Vol. I (Grundlehren der Mathematischen Wissenschaften, 115) , 2nd edn. Springer, Berlin–New York, 1979.
[Kas88] Kasparov, G.. Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91(1) (1988), 147201.
[Kat08] Katsura, T.. A class of C -algebras generalizing both graph algebras and homeomorphism C -algebras. IV. Pure infiniteness. J. Funct. Anal. 254(5) (2008), 11611187.
[Kir] Kirchberg, E.. The Classification of Purely Infinite C -algebras Using Kasparov’s Theory (Fields Institute Communications) . American Mathematical Society, Providence, RI, to appear.
[KOQ14] Kaliszewski, S., Omland, T. and Quigg, J.. Cuntz–Li algebras from a-adic numbers. Rev. Roumaine Math. Pures Appl. 59(3) (2014), 331370.
[KP00] Kumjian, A. and Pask, D.. Higher rank graph C -algebras. New York J. Math. 6 (2000), 120.
[Lac00] Laca, M.. From endomorphisms to automorphisms and back: dilations and full corners. J. Lond. Math. Soc. (2) 61(3) (2000), 893904.
[Li12] Li, X.. Semigroup C -algebras and amenability of semigroups. J. Funct. Anal. 262(10) (2012), 43024340.
[LL12] Larsen, N. S. and Li, X.. The 2-adic ring C -algebra of the integers and its representations. J. Funct. Anal. 262(4) (2012), 13921426.
[LN16] Li, X. and Norling, M. D.. Independent resolutions for totally disconnected dynamical systems II: C -algebraic case. J. Operator Theory 75(1) (2016), 163193.
[Lor97] Loring, T. A.. Lifting Solutions to Perturbing Problems in C -algebras (Fields Institute Monographs, 8) . American Mathematical Society, Providence, RI, 1997.
[LR96] Laca, M. and Raeburn, I.. Semigroup crossed products and the Toeplitz algebras of nonabelian groups. J. Funct. Anal. 139(2) (1996), 415440.
[Mas52] Massey, W. S.. Exact couples in algebraic topology. I, II. Ann. of Math. (2) 56 (1952), 363396.
[Mas53] Massey, W. S.. Exact couples in algebraic topology. III, IV, V. Ann. of Math. (2) 57 (1953), 248286.
[Nic92] Nica, A.. C -algebras generated by isometries and Wiener–Hopf operators. J. Operator Theory 27(1) (1992), 1752.
[Oml13] Omland, T.. C -algebras associated with a-adic numbers. Operator Algebra and Dynamics (Springer Proceedings in Mathematics and Statistics, 58) . Springer, Heidelberg, 2013, pp. 223238.
[Pas81] Paschke, W. L.. K-theory for actions of the circle group on C -algebras. J. Operator Theory 6(1) (1981), 125133.
[Phi00] Phillips, N. C.. A classification theorem for nuclear purely infinite simple C -algebras. Doc. Math. 5 (2000), 49114.
[PV80] Pimsner, M. V. and Voiculescu, D.-V.. Exact sequences for K-groups and Ext-groups of certain cross-product C -algebras. J. Operator Theory 4(1) (1980), 93118.
[Rør02] Rørdam, M.. Classification of nuclear, simple C -algebras. Classification of Nuclear C -algebras. Entropy in Operator Algebras (Encyclopaedia of Mathematical Sciences, 126) . Springer, Berlin, 2002, pp. 1145.
[RS04] Raeburn, I. and Szymański, W.. Cuntz–Krieger algebras of infinite graphs and matrices. Trans. Amer. Math. Soc. 356(1) (2004), 3959.
[RosSch87] Rosenberg, J. and Schochet, C.. The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor. Duke Math. J. 55(2) (1987), 431474.
[SB09] Savinien, J. and Bellissard, J.. A spectral sequence for the K-theory of tiling spaces. Ergod. Th. & Dynam. Sys. 29(3) (2009), 9971031.
[Sch81] Schochet, C. L.. Topological methods for C -algebras. I. Spectral sequences. Pacific J. Math. 96(1) (1981), 193211.
[Sta] Stammeier, N.. A boundary quotient diagram for right LCM semigroups. Preprint, 2016, arXiv:1604.03172.
[Sta15] Stammeier, N.. On C -algebras of irreversible algebraic dynamical systems. J. Funct. Anal. 269(4) (2015), 11361179.
[Wil07] Williams, D. P.. Crossed Products of C -algebras (Mathematical Surveys and Monographs, 134) . American Mathematical Society, Providence, RI, 2007.
[Zha92] Zhang, S.. Certain C -algebras with real rank zero and their corona and multiplier algebras. I. Pacific J. Math. 155(1) (1992), 169197.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed