Skip to main content Accessibility help
×
×
Home

On the existence of cocycle-invariant Borel probability measures

  • BENJAMIN D. MILLER (a1)
Abstract

We show that a natural generalization of compressibility is the sole obstruction to the existence of a cocycle-invariant Borel probability measure.

Copyright
References
Hide All
[BK96] Becker, H. and Kechris, A. S.. The Descriptive Set Theory of Polish Group Actions (London Mathematical Society Lecture Note Series, 232) . Cambridge University Press, Cambridge, 1996.
[DJK94] Dougherty, R., Jackson, S. and Kechris, A. S.. The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc. 341(1) (1994), 193225.
[FM77] Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc. 234(2) (1977), 289324.
[Hop32] Hopf, E.. Theory of measure and invariant integrals. Trans. Amer. Math. Soc. 34(2) (1932), 373393.
[Kec95] Kechris, A. S.. Classical Descriptive Set Theory (Graduate Texts in Mathematics, 156) . Springer, New York, 1995.
[KM04] Kechris, A. S. and Miller, B. D.. Topics in Orbit Equivalence (Lecture Notes in Mathematics, 1852) . Springer, Berlin, 2004.
[KST99] Kechris, A. S., Solecki, S. and Todorcevic, S.. Borel chromatic numbers. Adv. Math. 141(1) (1999), 144.
[Mil08a] Miller, B. D.. The existence of measures of a given cocycle. II. Probability measures. Ergod. Th. & Dynam. Sys. 28(5) (2008), 16151633.
[Mil08b] Miller, B.. The existence of measures of a given cocycle. I. Atomless, ergodic 𝜎-finite measures. Ergod. Th. & Dynam. Sys. 28(5) (2008), 15991613.
[MVN36] Murray, F. J. and Von Neumann, J.. On rings of operators. Ann. of Math. (2) 37(1) (1936), 116229.
[Nad90] Nadkarni, M. G.. On the existence of a finite invariant measure. Proc. Indian Acad. Sci. Math. Sci. 100(3) (1990), 203220.
[Wei84] Weiss, B.. Measurable dynamics. Conference in Modern Analysis and Probability (New Haven, Conn., 1982) (Contemporary Mathematics, 26) . American Mathematical Society, Providence, RI, 1984, pp. 395421.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed