Skip to main content Accessibility help

Notes on the multiplicative ergodic theorem



The Oseledets multiplicative ergodic theorem is a basic result with numerous applications throughout dynamical systems. These notes provide an introduction to this theorem, as well as subsequent generalizations. They are based on lectures at summer schools in Brazil, France, and Russia.



Hide All
[Aar97] Aaronson, J.. An Introduction to Infinite Ergodic Theory (Mathematical Surveys and Monographs, 50) . American Mathematical Society, Providence, RI, 1997.
[Arv76] Arveson, W.. An Invitation to C -Algebras (Graduate Texts in Mathematics, 39) . Springer, New York, 1976.
[BH99] Bridson, M. R. and Haefliger, A.. Metric Spaces of Non-positive Curvature (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319) . Springer, Berlin, 1999.
[Boc] Bochi, J.. The multiplicative ergodic theorem of Oseledets. Lecture notes available on the author’s website,∼jairo.bochi/docs/oseledets.pdf.
[Bog07] Bogachev, V. I.. Measure Theory. Vols. I, II. Springer, Berlin, 2007.
[EW11] Einsiedler, M. and Ward, T.. Ergodic Theory with a View Towards Number Theory (Graduate Texts in Mathematics, 259) . Springer, London, 2011.
[FK60] Furstenberg, H. and Kesten, H.. Products of random matrices. Ann. Math. Statist. 31 (1960), 457469.
[GK15] Gouëzel, S. and Karlsson, A.. Subadditive and multiplicative ergodic theorems. ArXiv e-prints, Preprint, 2015, arXiv:1509.07733 [math.DS].
[Kaĭ87] Kaĭmanovich, V. A.. Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) [Differentsialnaya Geom. Gruppy Li i Mekh. IX] 164 (1987), 2946, 196–197.
[Kar] Karlsson, A.. Ergodic theorems for noncommuting random products. Lecture notes available on the author’s website,
[Kec95] Kechris, A. S.. Classical Descriptive Set Theory (Graduate Texts in Mathematics, 156) . Springer, New York, 1995.
[KH95] Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications, 54) . Cambridge University Press, Cambridge, 1995, with a supplementary chapter by Katok and Leonardo Mendoza.
[KL06] Karlsson, A. and Ledrappier, F.. On laws of large numbers for random walks. Ann. Probab. 34(5) (2006), 16931706.
[KM99] Karlsson, A. and Margulis, G. A.. A multiplicative ergodic theorem and nonpositively curved spaces. Comm. Math. Phys. 208(1) (1999), 107123.
[Led84] Ledrappier, F.. Quelques propriétés des exposants caractéristiques. École d’été de probabilités de Saint-Flour, XII—1982 (Lecture Notes in Mathematics, 1097) . Springer, Berlin, 1984, pp. 305396.
[LY85a] Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math. (2) 122(3) (1985), 509539.
[LY85b] Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. of Math. (2) 122(3) (1985), 540574.
[Mañ87] Mañé, R.. Ergodic Theory and Differentiable Dynamics (Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8) . Springer, Berlin, 1987, translated from the Portuguese by Silvio Levy.
[Mar74] Margulis, G. A.. Arithmetic properties of discrete subgroups. Uspekhi Mat. Nauk 29(1(175)) (1974), 4998.
[Mon06] Monod, N.. Superrigidity for irreducible lattices and geometric splitting. J. Amer. Math. Soc. 19(4) (2006), 781814.
[Mor13] Morris, I. D.. Mather sets for sequences of matrices and applications to the study of joint spectral radii. Proc. Lond. Math. Soc. (3) 107(1) (2013), 121150.
[Ose68] Oseledets, V. I.. A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems. Tr. Mosk. Mat. Obš. 19 (1968), 179210.
[Pes76] Pesin, J. B.. Families of invariant manifolds that correspond to nonzero characteristic exponents. Izv. Akad. Nauk SSSR Ser. Mat. 40(6) (1976), 13321379, 1440.
[Pes77] Pesin, J. B.. Characteristic Ljapunov exponents, and smooth ergodic theory. Uspekhi Mat. Nauk 32(4(196)) (1977), 55112 287.
[Rue79] Ruelle, D.. Ergodic theory of differentiable dynamical systems. Inst. Hautes Études Sci. Publ. Math. 50 (1979), 2758.
[Rue82] Ruelle, D.. Characteristic exponents and invariant manifolds in Hilbert space. Ann. of Math. (2) 115(2) (1982), 243290.
[Via14] Viana, M.. Lectures on Lyapunov Exponents (Cambridge Studies in Advanced Mathematics, 145) . Cambridge University Press, Cambridge, 2014.
[Wal75] Walters, P.. Ergodic Theory—Introductory Lectures (Lecture Notes in Mathematics, 458) . Springer, Berlin–New York, 1975.
[Wal93] Walters, P.. A dynamical proof of the multiplicative ergodic theorem. Trans. Amer. Math. Soc. 335(1) (1993), 245257.
[Zim84] Zimmer, R. J.. Ergodic Theory and Semisimple Groups (Monographs in Mathematics, 81) . Birkhäuser, Basel, 1984.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed