Skip to main content Accessibility help

Norm variation of ergodic averages with respect to two commuting transformations



We study double ergodic averages with respect to two general commuting transformations and establish a sharp quantitative result on their convergence in the norm. We approach the problem via real harmonic analysis, using recently developed methods for bounding multilinear singular integrals with certain entangled structure. A byproduct of our proof is a bound for a two-dimensional bilinear square function related to the so-called triangular Hilbert transform.



Hide All
[1] Abramowitz, M. and Stegun, I. A. (Eds). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1992.
[2] Austin, T.. On the norm convergence of non-conventional ergodic averages. Ergod. Th. & Dynam. Sys. 30(2) (2010), 321338.
[3] Avigad, J. and Rute, J.. Oscillation and the mean ergodic theorem for uniformly convex Banach spaces. Ergod. Th. & Dynam. Sys. 35(4) (2015), 10091027.
[4] Bernicot, F.. L p estimates for non smooth bilinear Littlewood–Paley square functions on ℝ. Math. Ann. 351(1) (2011), 149.
[5] Bernicot, F. and Shrivastava, S.. Boundedness of smooth bilinear square functions and applications to some bilinear pseudo-differential operators. Indiana Univ. Math. J. 60(1) (2011), 233268.
[6] Birkhoff, G. D.. Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17(12) (1931), 656660.
[7] Bourgain, J.. Almost sure convergence and bounded entropy. Israel J. Math. 63(1) (1988), 7997.
[8] Bourgain, J.. Pointwise ergodic theorems for arithmetic sets, with an appendix by the author, H. Furstenberg, Y. Katznelson, and D. S. Ornstein. Publ. Math. Inst. Hautes Études Sci. 69 (1989), 545.
[9] Bourgain, J.. Double recurrence and almost sure convergence. J. Reine Angew. Math. 404 (1990), 140161.
[10] Conze, J.-P. and Lesigne, E.. Théorèmes ergodiques pour des mesures diagonales. Bull. Soc. Math. France 112(2) (1984), 143175.
[11] Demeter, C. and Thiele, C.. On the two-dimensional bilinear Hilbert transform. Amer. J. Math. 132(1) (2010), 201256.
[12] Do, Y., Oberlin, R. and Palsson, E. A.. Variation-norm and fluctuation estimates for ergodic bilinear averages. Indiana Univ. Math. J. 66 (2017), 5599.
[13] Donoso, S. and Sun, W.. Pointwise multiple averages for systems with two commuting transformations. Ergod. Th. & Dynam. Sys. 126. doi:10.1017/etds.2016.127. Published online 14 March 2017.
[14] Durcik, P.. An L 4 estimate for a singular entangled quadrilinear form. Math. Res. Lett. 22(5) (2015), 13171332.
[15] Durcik, P.. $L^{p}$ estimates for a singular entangled quadrilinear form.  Trans. Amer. Math. Soc.   doi:10.1090/tran/6850. Published online 30 March 2017.
[16] Furstenberg, H.. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31 (1977), 204256.
[17] Furstenberg, H. and Katznelson, Y.. An ergodic Szemerédi theorem for commuting transformations. J. Anal. Math. 38(1) (1978), 275291.
[18] Furstenberg, H., Katznelson, Y. and Ornstein, D.. The ergodic theoretical proof of Szemerédi’s theorem. Bull. Amer. Math. Soc. (N.S.) 7(3) (1982), 527552.
[19] Jones, R. L., Kaufman, R., Rosenblatt, J. M. and Wierdl, M.. Oscillation in ergodic theory. Ergod. Th. & Dynam. Sys. 18(4) (1998), 889935.
[20] Jones, R. L., Ostrovskii, I. V. and Rosenblatt, J. M.. Square functions in ergodic theory. Ergod. Th. & Dynam. Sys. 16(2) (1996), 267305.
[21] Jones, R. L., Seeger, A. and Wright, J.. Strong variational and jump inequalities in harmonic analysis. Trans. Amer. Math. Soc. 360(12) (2008), 67116742.
[22] Kovač, V.. Bellman function technique for multilinear estimates and an application to generalized paraproducts. Indiana Univ. Math. J. 60(3) (2011), 813846.
[23] Kovač, V.. Boundedness of the twisted paraproduct. Rev. Mat. Iberoam. 28(4) (2012), 11431164.
[24] Kovač, V.. Quantitative norm convergence of double ergodic averages associated with two commuting group actions. Ergod. Th. & Dynam. Sys. 36(3) (2016), 860874.
[25] Kovač, V. and Škreb, K. A.. One modification of the martingale transform and its applications to paraproducts and stochastic integrals. J. Math. Anal. Appl. 426(2) (2015), 11431163.
[26] Kovač, V. and Thiele, C.. A T (1) theorem for entangled multilinear dyadic Calderón–Zygmund operators. Illinois J. Math. 57(3) (2013), 775799.
[27] Kovač, V., Thiele, C. and Zorin-Kranich, P.. Dyadic triangular Hilbert transform of two general functions and one not too general function. Forum Math. Sigma 3 (2015) (e25), 27 pages. doi:10.1017/fms.2015.25.
[28] Lacey, M.. On bilinear Littlewood–Paley square functions. Publ. Mat. 40(2) (1996), 387396.
[29] Lacey, M. and Thiele, C.. L p estimates on the bilinear Hilbert transform for 2 < p < . Ann. of Math. (2) 146(3) (1997), 693724.
[30] Lacey, M. and Thiele, C.. On Calderón’s conjecture. Ann. of Math. (2) 149(2) (1999), 475496.
[31] Mirek, M., Stein, E. and Trojan, B.. $\ell ^{p}(\mathbb{Z}^{d})$ -estimates for discrete operators of Radon type: variational estimates. Invent. Math. doi:10.1007/s00222-017-0718-4. Published online 31 January 2017.
[32] Mohanty, P. and Shrivastava, S.. A note on the bilinear Littlewood–Paley square function. Proc. Amer. Math. Soc. 138(6) (2010), 20952098.
[33] von Neumann, J.. Proof of the quasi-ergodic hypothesis. Proc. Natl. Acad. Sci. USA 18(1) (1932), 7082.
[34] Ratnakumar, P. K. and Shrivastava, S.. On bilinear Littlewood–Paley square functions. Proc. Amer. Math. Soc. 140(12) (2012), 42854293.
[35] Rubio de Francia, J. L.. A Littlewood–Paley inequality for arbitrary intervals. Rev. Mat. Iberoam. 1(2) (1985), 114.
[36] Tao, T.. Norm convergence of multiple ergodic averages for commuting transformations. Ergod. Th. & Dynam. Sys. 28(2) (2008), 657688.
[37] Tao, T.. Cancellation for the multilinear Hilbert transform. Collect. Math. 67(2) (2016), 191206.
[38] Thiele, C.. Wave Packet Analysis (CBMS Regional Conference Series in Mathematics, 105) . American Mathematical Society, Providence, RI, 2006.
[39] Walsh, M. N.. Norm convergence of nilpotent ergodic averages. Ann. of Math. (2) 175(3) (2012), 16671688.
[40]Wolfram Research, Inc., Mathematica, ver. 9.0, Champaign, IL, 2012.
[41] Zorin-Kranich, P.. Cancellation for the simplex Hilbert transform. Math. Res. Lett., to appear, Preprint, 2015, arXiv:1507.02436.

Norm variation of ergodic averages with respect to two commuting transformations



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed