Skip to main content Accessibility help
×
Home

Invariant measures on stationary Bratteli diagrams

  • S. BEZUGLYI (a1), J. KWIATKOWSKI (a2), K. MEDYNETS (a1) and B. SOLOMYAK (a3)

Abstract

We study dynamical systems acting on the path space of a stationary (non-simple) Bratteli diagram. For such systems we give an explicit description of all ergodic probability measures that are invariant with respect to the tail equivalence relation (or the Vershik map); these measures are completely described by the incidence matrix of the Bratteli diagram. Since such diagrams correspond to substitution dynamical systems, our description provides an algorithm for finding invariant probability measures for aperiodic non-minimal substitution systems. Several corollaries of these results are obtained. In particular, we show that the invariant measures are not mixing and give a criterion for a complex number to be an eigenvalue for the Vershik map.

Copyright

References

Hide All
[1]Akin, E.. Measures on Cantor space. Topology Proc. 24 (1999), 134.
[2]Akin, E.. Good measures on Cantor sets. Trans. Amer. Math. Soc. 357 (2004), 26812722.
[3]Allouche, J.-P. and Shallit, J.. Automatic Sequences. Theory, Applications, Generalizations. Cambridge University Press, Cambridge, 2003.
[4]Bailey, S., Keane, M., Petersen, K. and Salama, I.. Ergodicity of the adic transformation on the Euler graph. Math. Proc. Cambridge Philos. Soc. 141 (2006), 231238.
[5]Bauer, W. and Sigmund, K.. Topological dynamics of transformations induced on the space of probability measures. Monatsh. Math. 79 (1975), 8192.
[6]Bezuglyi, S., Kwiatkowski, J. and Medynets, K.. Aperiodic substitutional systems and their Bratteli diagrams. Ergod. Th. & Dynam. Sys. (2009) to appear.
[7]Bezuglyi, S., Dooley, A. H. and Kwiatkowski, J.. Topologies on the group of Borel automorphisms of a standard Borel space. Topol. Methods Nonlinear Anal. 27 (2006), 333385.
[8]Bressaud, X., Durand, F. and Maass, A.. Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems. J. London Math. Soc. 72(2) (2005), 799816.
[9]Bowen, R. and Marcus, B.. Unique ergodicity for horocycle foliations. Israel J. Math. 26(1) (1977), 4367.
[10]Cornfeld, I., Sinai, Ya. and Fomin, S.. Ergodic Theory. Springer, New York, 1982.
[11]Cortez, M. I., Durand, F., Host, B. and Maass, A.. Continuous and measurable eigenfunctions for linearly recurrent dynamical Cantor systems. J. London Math. Soc. 67(3) (2003), 790804.
[12]Damanik, D. and Lenz, D.. Substitution dynamical systems: characterization of linear repetitivity and applications. J. Math. Anal. Appl. 321 (2006), 766780.
[13]Dekking, F. M. and Keane, M.. Mixing properties of substitutions. Zeit. Wahr. 42 (1978), 2333.
[14]Denker, M. and Keane, M.. Almost topological dynamical systems. Israel J. Math. 34 (1979), 139160.
[15]Dougherty, R., Jackson, S. and Kechris, A.. The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc. 341 (1994), 193225.
[16]Downarowicz, T.. The Choquet simplex of invariant measures for minimal flows. Israel J. Math. 74 (1991), 241256.
[17]Downarowicz, T.. Minimal models for noninvertible and not uniquely ergodic systems. Israel J. Math. 156 (2006), 93110.
[18]Durand, F.. A theorem of Cobham for non-primitive substitutions. Acta Arith. 104(3) (2002), 225241.
[19]Durand, F., Host, B. and Skau, C.. Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergod. Th. & Dynam. Sys. 19 (1999), 953993.
[20]Effros, E. G.. Dimensions and C *-algebras (CBMS Regional Conference Series in Mathematics, 46). Conference Board of the Mathematical Sciences, Washington, DC, 1981.
[21]Ferenczi, S., Mauduit, C. and Nogueira, A.. Substitution dynamical systems: algebraic characterization of eigenvalues. Ann. Sci. L’École Norm. Sup. 29 (1996), 519533.
[22]Ferenczi, S., Fisher, A. and Talet, M.. Minimality and unique ergodicity for adic transformations. Preprint.
[23]Fisher, A.. Integer Cantor sets and an order-two ergodic theorem. Ergod. Th. & Dynam. Sys. 13 (1992), 4564.
[24]Fisher, A.. Nonstationary mixing and the unique ergodicity of adic transformations. Preprint.
[25]Forrest, A.. K-groups associated with substitution minimal systems. Israel J. Math. 98 (1997), 101139.
[26]Gantmacher, F. R.. The Theory of Matrices. Chelsea, New York, 1959.
[27]Giordano, T., Putnam, I. and Skau, C.. Topological orbit equivalence and C *-crossed products. J. Reine Angew. Math. 469 (1995), 51111.
[28]Giordano, T., Putnam, I. and Skau, C.. Affable equivalence relations and orbit structure of Cantor dynamical systems. Ergod. Th. & Dynam. Sys. 24 (2004), 441475.
[29]Gjerde, R. and Johansen, Ø.. Bratteli–Vershik models for Cantor minimal systems: applications to Toeplitz flows. Ergod. Th. & Dynam. Sys. 20 (2000), 16871710.
[30]Glasner, E. and Weiss, B.. Quasi-factors of zero-entropy systems. J. Amer. Math. Soc. 8 (1995), 665686.
[31]Glasner, E. and Weiss, B.. Weak orbit equivalence of Cantor minimal systems. Internat. J. Math. 6 (1995), 559579.
[32]Glasner, E. and Weiss, B.. Kazhdan’s property T and the geometry of the collection of invariant measures. Geom. Funct. Anal. 7 (1997), 917935.
[33]Handelman, D.. Reducible topological Markov chains via K 0-theory and Ext. Contemp. Math. 10 (1982), 4176.
[34]Herman, R. H., Putnam, I. and Skau, C.. Ordered Bratteli diagrams, dimension groups, and topological dynamics. Internat. J. Math. 3 (1992), 827864.
[35]Host, B.. Valeurs propres de systèmes dynamiques définis par de substitutions de longueur variable. Ergod. Th. & Dynam. Sys. 6 (1986), 529540.
[36]Keane, M.. Non-ergodic interval exchange transformations. Israel J. Math. 26(2) (1977), 188196.
[37]Kerov, S. and Vershik, A.. Locally semisimple algebras. Combinatorial theory and the K0-functor. Current Problems in Mathematics. Newest Results 26 (1985), 356. (Russian) Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985.
[38]Környei, I.. On a theorem of Pisot. Publ. Math. Debrecen 34(3–4) (1987), 169179.
[39]Lind, D. and Marcus, B.. Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.
[40]Livshits, A. N.. On the spectra of adic transformations of Markov compacta. Russian Math. Surveys 42(3) (1987), 222223.
[41]Livshits, A. N.. A sufficient condition for weak mixing of substitutions and stationary adic transformations. Math. Notes 44(6) (1988), 920925.
[42]Medynets, K.. Cantor aperiodic systems and Bratteli diagrams. C. R. Math. Acad. Sci. Paris 342 (2006), 4346.
[43]Mignosi, F. and Séébold, P.. If a DOL language is k-power free then it is circular. Automata, Languages and Programming (Lund, 1993) (Lecture Notes in Computer Science, 700). Springer, Berlin, 1993, pp. 507518.
[44]Pansiot, J.-J.. Complexité des facteurs des mots infinis engendrés par morphismes itéré. Automata, Languages and Programming (Antwerp, 1984) (Lecture Notes in Computer Science, 172). Springer, Berlin, 1984, pp. 380389.
[45]Petersen, K.. Ergodic Theory. Cambridge University Press, Cambridge, 1983.
[46]Petersen, K. and Schmidt, K.. Symmetric Gibbs measures. Trans. Amer. Math. Soc. 349(7) (1997), 27752811.
[47]Pullman, N. J.. A geometric approach to the theory of non-negative matrices. Linear Algebra Appl. 4 (1971), 711718.
[48]Queffelec, M.. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics, 1294). Springer, Berlin, 1987.
[49]Schneider, H.. The influence of the marked reduced graph of a non-negative matrix on the Jordan form and on related properties: a survey. Linear Algebra Appl. 84 (1986), 161189.
[50]Sigmund, K.. Affine transformations on the space of probability measures. Astérisque 51 (1978), 415427Dynamical Systems III (Warsaw, 1977).
[51]Solomyak, B.. Dynamics of self-similar tilings. Ergod. Th. & Dynam. Sys. 17 (1997), 695738. B. Solomyak. Corrections to ‘Dynamics of self-similar tilings’. Ergod. Th. & Dynam. Sys. 19 (1999), 1685.
[52]Tam, B. and Schneider, H.. On the core of a cone-preserving map. Trans. Amer. Math. Soc. 343 (1994), 479524.
[53]Tam, B. and Schneider, H.. On the invariant faces associated with a cone-preserving map. Trans. Amer. Math. Soc. 353 (2001), 209245.
[54]Vershik, A.. Uniform algebraic approximation of shift and multiplication operators. Soviet Math. Dokl. 24 (1981), 97100.
[55]Vershik, A.. A theorem on periodic Markov approximation in ergodic theory. Ergodic Theory and Related Topics. Akademie, Berlin, 1982, pp. 195206.
[56]Vershik, A. and Livshits, A.. Adic models of ergodic transformations, spectral theory, substitutions, and related topics. Adv. Soviet Math. 9 (1992), 185204.
[57]Victory, H. D. Jr. On nonnegative solutions to matrix equations. SIAM J. Algebraic Discrete Methods 6 (1985), 406412.
[58]Walters, P.. An Introduction to Ergodic Theory. Springer, New York, 1982.
[59]Yuasa, H.. Invariant measures for the subshifts arising from non-primitive substitutions. J. D’Analyse Math. 102 (2007), 143180.

Related content

Powered by UNSILO

Invariant measures on stationary Bratteli diagrams

  • S. BEZUGLYI (a1), J. KWIATKOWSKI (a2), K. MEDYNETS (a1) and B. SOLOMYAK (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.