Skip to main content Accessibility help
×
Home

Hausdorff dimension of invariant measure of circle diffeomorphisms with a break point

  • KONSTANTIN KHANIN (a1) and SAŠA KOCIĆ (a2)

Abstract

We prove that, for almost all irrational $\unicode[STIX]{x1D70C}\in (0,1)$ , the Hausdorff dimension of the invariant measure of a $C^{2+\unicode[STIX]{x1D6FC}}$ -smooth $(\unicode[STIX]{x1D6FC}\in (0,1))$ circle diffeomorphism with a break of size $c\in \mathbb{R}_{+}\backslash \{1\}$ , with rotation number $\unicode[STIX]{x1D70C}$ , is zero. This result cannot be extended to all irrational rotation numbers.

Copyright

References

Hide All
[1] Cunha, K. and Smania, D.. Rigidity for piecewise smooth homeomorphisms on the circle. Adv. Math. 250 (2014), 193226.
[2] Furstenberg, H.. Strict ergodicity and transformation of the torus. Amer. J. Math. 83(4) (1961), 573601.
[3] Herman, M. R.. Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations. Publ. Math. Inst. Hautes Études Sci. 49 (1979), 5234.
[4] Khanin, K. and Kocić, S.. Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks. Geom. Funct. Anal. 24 (2014), 20022028.
[5] Khanin, K., Kocić, S. and Mazzeo, E.. C 1 -rigidity of circle diffeomorphisms with breaks for almost all rotation numbers. Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), 11631203.
[6] Khanin, K. and Teplinsky, A.. Herman’s theory revisited. Invent. Math. 178 (2009), 333344.
[7] Khanin, K. M. and Vul, E. B.. Circle homeomorphisms with weak discontinuities. Adv. Sov. Math. 3 (1991), 5798.
[8] Kocić, S.. Generic rigidity of circle diffeomorphisms with breaks. Comm. Math. Phys. 344(2) (2016), 427445.
[9] Marmi, S., Moussa, P. and Yoccoz, J.-C.. Linearization of generalized interval exchange maps. Ann. Math. 176(3) (2012), 15831646.
[10] Pesin, Y.. Dimension Theory in Dynamical Systems: Contemporary Views and Applications. The University of Chicago Press, Chicago, IL, 1998.
[11] Sadovskaya, V.. Dimensional characteristics of invariant measures for circle diffeomorphisms. Ergod. Th. & Dynam. Sys. 29 (2009), 19791992.
[12] Yoccoz, J.-C.. Conjugaison differentiable des difféomorphismes du cercle donc le nombre de rotation vérifie une condition Diophantienne. Ann. Sci. Éc. Norm. Supér. (4) 17 (1984), 333361.
[13] Young, L.-S.. Dimension, entropy, and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 2 (1982), 109124.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed