[1]Adams, S.. Trees and amenable equivalence relations. Ergod. Th. & Dynam. Sys. 10 (1990), 1–14.

[2]Adams, S. and Spatzier, R.. Kazhdan groups, cocycles and trees. Amer. J. Math. 112 (1990), 271–287.

[3]Brown, K. S.. Cohomology of Groups. Springer, New York, 1982.

[4]Cohen, D. E.. Groups with free subgroups of finite index. Conference on Group Theory *(Lecture Notes in Mathematics, 319)*. Springer, Berlin, 1973, pp. 26–44.

[5]Cohen, D. E.. Groups of Cohomological Dimension One *(Lecture Notes in Mathematics, 245)*. Springer, Berlin, 1972.

[6]Cohen, D. E.. Combinatorial Group Theory: A Topological Approach. Cambridge University Press, Cambridge, 1989.

[7]Connes, A., Feldman, J. and Weiss, B.. An amenable equivalence relation is generated by a single transformation. Ergod. Th. & Dynam Sys. 1 (1981), 431–450.

[8]Dooley, A. H. and Golodets, V. Ya.. The cost of an equivalence relation is determined by the cost of a finite index subrelation, submitted.

[9]Dooley, A. H. and Golodets, V. Ya.. The spectrum of completely positive entropy actions of countable amenable groups. J. Funct. Anal. 196 (2002), 1–18.

[10]Dooley, A. H., Ya. Golodets, V., Rudolph, D. J. and
Sinel’shchikov, S. D.. Non-Bernoulli systems with completely positive entropy. Ergod. Th. & Dynam Sys. 28 (2008), 87–124.

[11]Dyer, J. L. and Scott, G. P.. Periodic automorphisms of free groups. Commun. Algebra 3 (1975), 195–201.

[12]Feldman, J. and Moore, C.. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc. 234 (1977), 289–324; II. **234** (1977), 325–359.

[13]Gaboriau, D.. Coût des relations d’équivalence et des groupes. Invent. Math. 739 (2000), 41–98.

[14]Gaboriau, D.. Invariants *ℓ* ^{2} de relations d’équivalence et de groupes. Publ. Math. Inst. Hautes Etudes Sci. 95 (2002), 93–150.

[15]Gaboriau, D.. On orbit equivalence of measure preserving actions. Rigidity in Dynamics and Geometry (Cambridge, 2000). Springer, Berlin, 2002, pp. 167–186.

[16]Gaboriau, D.. Examples of groups that are measure equivalent to the free group. Ergod. Th. & Dynam. Sys. 25 (2005), 1809–1827.

[17]Higman, G., Neumann, B. and Neumann, H.. Embedding theorems for groups. J. London Math. Soc. 14 (1949), 247–257.

[18]Hjorth, G.. A lemma for cost attained. Ann. Pure Appl. Logic 143 (2006), 87–102.

[19]Hjorth, G. and Kechris, A. S.. Rigidity theorems for actions of product groups and countable Borel equivalence relations. Mem. Amer. Math. Soc. 177(833) (2005).

[20]Ionna, A., Peterson, J. and Popa, S.. Amalgamated free products of *w*-rigid factors and calculation of their symmetry groups. Acta Math. 200 (2008), 85–153.

[21]Jackson, S., Kechris, A. S. and Louveau, A.. Countable Borel equivalence relations. J. Math. Logic 2 (2002), 1–80.

[22]Karrass, A., Pietrowski, A. and Solitar, D.. Finitely and infinite cyclic extensions of free groups. J. Aust. Math. Soc. 16 (1973), 458–466.

[23]Karrass, A. and Solitar, D.. The subgroups of a free product of two groups with an amalgamated subgroup. Trans. Amer. Math. Soc. 150 (1970), 227–255.

[24]Karrass, A. and Solitar, D.. Subgroups of HNN groups and groups with one defining relation. Canad. J. Math 23 (1971), 627–643.

[25]Kechris, A. S. and Miller, B. D.. Topics in Orbit Equivalence Theory *(Lecture Notes in Mathematics, 1852)*. Springer, Berlin, 2004.

[26]Kirillov, A. A.. *Elements of the Theory of Representations*. Nauka, Moscow, 1972, 1978; English transl. Springer, Berlin, 1976.

[27]Lang, S.. Algebra. Addison-Wesley, Reading, MA, 1965.

[28]Levitt, G.. On the cost of generating an equivalence relation. Ergod. Th. & Dynam. Sys. 15 (1995), 1173–1181.

[29]Lyndon, R. and Schupp, R.. Combinatorial Group Theory, Band 89. Springer, Berlin, 1977.

[30]McCool, J.. A characterization of periodic automorphisms of a free group. Trans. Amer. Math. Soc. 260 (1980), 3309–3318.

[31]Meskin, S.. Periodic automorphisms of the two-generator free group. Int. Conf. Theory of Groups *(Lecture Notes in Mathematics, 372)*. Springer, Berlin, 1973, pp. 494–498.

[32]Ornstein, D. and Weiss, B.. Ergodic theory of amenable group actions, I. The Rohlin lemma. Bull. Amer. Math. Soc. 2 (1980), 161–164.

[33]Pemantle, R. and Peres, Y.. Nonamenable products are not treeable. Israel J. Math. 118 (2004), 147–155.

[34]Roman’kov, V. A.. Automorphisms of groups. Acta Appl. Math. 29 (1992), 241–280.

[35]Schrier, O.. Die Untergruppen der freien Gruppen. Abh. Math. Sem. Univ. Hamburg 5 (1927), 161–183.

[36]Scott, G. P.. An embedding theorem for groups with a free subgroup of finite index. Bull. London Math. Soc. 6 (1974), 304–306.

[37]Scott, G. P. and Wall, C. T. C.. Topological Methods in Group Theory, Homological Group Theory *(London Mathematical Society Lecture Notes, 36)*. Cambridge University Press, Cambridge, 1979, pp. 137–203.

[38]Serre, J.-P.. Sur la dimension cohomologique de groupes profinis. Topology 3 (1965), 413–420.

[39]Serre, J.-P.. Trees. Springer, Berlin, 1980.

[40]Shalom, Y.. Measurable Group Theory, 4. ECM, Stockholm, 2004, pp. 391–423.

[41]Stallings, J. R.. On torsion-free groups with infinitely many generators. Ann. Math. 88 (1968), 312–334.

[42]Stallings, J. R.. Groups of cohomological dimension one. Amer. Math. Soc. (1970), 124–128.

[43]Swan, R. G.. Groups of cohomological dimension one. J. Algebra 12 (1969), 585–610.