Skip to main content Accessibility help
×
Home

A Fréchet law and an Erdős–Philipp law for maximal cuspidal windings

  • JOHANNES JAERISCH (a1), MARC KESSEBÖHMER (a2) and BERND O. STRATMANN (a2)

Abstract

In this paper we establish a Fréchet law for maximal cuspidal windings of the geodesic flow on a Riemannian surface associated with an arbitrary finitely generated, essentially free Fuchsian group with parabolic elements. This result extends previous work by Galambos and Dolgopyat and is obtained by applying extreme value theory. Subsequently, we show that this law gives rise to an Erdős–Philipp law and to various generalized Khintchine-type results for maximal cuspidal windings. These results strengthen previous results by Sullivan, Stratmann and Velani for Kleinian groups, and extend earlier work by Philipp on continued fractions, which was inspired by a conjecture of Erdős.

Copyright

References

Hide All
[Aar81]Aaronson, J.. The asymptotic distributional behaviour of transformations preserving infinite measures. J. Anal. Math. 39 (1981), 203234.
[Aar97]Aaronson, J.. An Introduction to Infinite Ergodic Theory (Mathematical Surveys and Monographs, 50). American Mathematical Society, Providence, RI, 1997.
[ADU93]Aaronson, J., Denker, M. and Urbański, M.. Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Amer. Math. Soc. 337(2) (1993), 495548.
[Bea71]Beardon, A. F.. Inequalities for certain Fuchsian groups. Acta Math. 127 (1971), 221258.
[Bea95]Beardon, A. F.. The Geometry of Discrete Groups (Graduate Texts in Mathematics, 91). Springer, New York, 1995; corrected reprint of the 1983 original.
[Ber64]Berman, S. M.. Limit theorems for the maximum term in stationary sequences. Ann. Math. Stat. 35 (1964), 502516.
[BNN95]Balakrishnan, V., Nicolis, C. and Nicolis, G.. Extreme value distributions in chaotic dynamics. J. Stat. Phys. 80(1–2) (1995), 307336.
[BS79]Bowen, R. and Series, C.. Markov maps associated with Fuchsian groups. Publ. Math. Inst. Hautes Études Sci. 1979(50) 153170.
[Col01]Collet, P.. Statistics of closest return for some non-uniformly hyperbolic systems. Ergod. Th. & Dynam. Sys. 21(2) (2001), 401420.
[Dav79]Davis, R. A.. Maxima and minima of stationary sequences. Ann. Probab. 7(3) (1979), 453460.
[Dol97]Dolgopyat, D.. On statistical properties of geodesic flows on negatively curved surfaces. PhD Thesis, Princeton University, 1997.
[EP94]Epstein, D. B. A. and Petronio, C.. An exposition of Poincaré’s polyhedron theorem. Enseign. Math. (2) 40(1–2) (1994), 113170.
[Fer11]Ferguson, A. J.. Dimension theory and dynamically defined sets. PhD Thesis, University of Warwick, 2011.
[FF08]Freitas, A. C. M. and Freitas, J. M.. On the link between dependence and independence in extreme value theory for dynamical systems. Statist. Probab. Lett. 78(9) (2008), 10881093.
[FFT10]Freitas, A. C. M., Freitas, J. M. and Todd, M.. Hitting time statistics and extreme value theory. Probab. Theory Related Fields 147(3-4) (2010), 675710.
[FFT11]Freitas, A. C. M., Freitas, J. M. and Todd, M.. Extreme value laws in dynamical systems for non-smooth observations. J. Stat. Phys. 142(1) (2011), 108126.
[Flo80]Floyd, W. J.. Group completions and limit sets of Kleinian groups. Invent. Math. 57(3) (1980), 205218.
[Fr{é}28]Fréchet, M.. Sur la loi de probabilité de l’écart maximum. Ann. Soc. Polon. Math. 6 (1928), 93122.
[FT28]Fisher, R. A. and Tippett, L. H. C.. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Cambridge 24 (1928), 180190.
[Gal72]Galambos, J.. The distribution of the largest coefficient in continued fraction expansions. Q. J. Math. Oxford Ser. (2) 23 (1972), 147151.
[Gal73]Galambos, J.. The largest coefficient in continued fractions and related problems. Diophantine Approximation and its Applications (Proc. Conf., Washington, DC, 1972). Academic Press, New York, NY, 1973, pp. 101109.
[GHN11]Gupta, C., Hollander, M. and Nicol, M.. Extreme value theory and return time statistics for dispersing billiard maps and flows, Lozi maps and Lorenz-like maps. Ergod. Th. & Dynam. Sys. 31 (2011), 13631390.
[Gne43]Gnedenko, B.. Sur la distribution limite du terme maximum d’une série aléatoire. Ann. of Math. (2) 44 (1943), 423453.
[GNO10]Gupta, C., Nicol, M. and Ott, W.. A Borel-Cantelli lemma for nonuniformly expanding dynamical systems. Nonlinearity 23(8) (2010), 19912008.
[Gum58]Gumbel, E. J.. Statistics of Extremes. Columbia University Press, New York, 1958.
[Gup10]Gupta, C.. Extreme-value distributions for some classes of non-uniformly partially hyperbolic dynamical systems. Ergod. Th. & Dynam. Sys. 30(3) (2010), 757771.
[Khi64]Khinchin, A. Y.. Continued Fractions. The University of Chicago Press, Chicago, IL, London, 1964.
[KS04]Kesseböhmer, M. and Stratmann, B. O.. A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups. Ergod. Th. & Dynam. Sys. 24(1) (2004), 141170.
[Lea74]Leadbetter, M. R.. On extreme values in stationary sequences. Z. Wahrscheinlichkeitstheor. Verw. Geb. 28 (1974), 289303.
[LLR83]Leadbetter, M. R., Lindgren, G. and Rootzén, H.. Extremes and Related Properties of Random Sequences and Processes (Springer Series in Statistics, 11). Springer, New York, 1983.
[Loy65]Loynes, R. M.. Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Stat. 36 (1965), 993999.
[MFF08]Moreira Freitas, A. C. and Freitas, J. M.. Extreme values for Benedicks–Carleson quadratic maps. Ergod. Th. & Dynam. Sys. 28(4) (2008), 11171133.
[Nic89]Nicholls, P. J.. The Ergodic Theory of Discrete Groups (London Mathematical Society Lecture Note Series, 143). Cambridge University Press, Cambridge, 1989.
[NN03]Nakada, H. and Natsui, R.. On the metrical theory of continued fraction mixing fibred systems and its application to Jacobi–Perron algorithm. Monatsh. Math. 138(4) (2003), 267288.
[Pat76]Patterson, S. J.. The limit set of a Fuchsian group. Acta Math. 136(3–4) (1976), 241273.
[Phi76]Philipp, W.. A conjecture of Erdős on continued fractions. Acta Arith. 28(4) (1975/76), 379386.
[Pol09]Pollicott, M.. Limiting distributions for geodesics excursions on the modular surface. Spectral Analysis in Geometry and Number Theory (Contemporary Mathematics, 484). American Mathematical Society, Providence, RI, 2009, pp. 177185.
[Sch95]Schweiger, F.. Ergodic Theory of Fibred Systems and Metric Number Theory. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
[Spr69]Sprindžuk, V. G.. Mahler’s Problem in Metric Number Theory. Translated from the Russian by B. Volkmann (Translations of Mathematical Monographs, 25). American Mathematical Society, Providence, RI, 1969.
[SS05]Stadlbauer, M. and Stratmann, B. O.. Infinite ergodic theory for Kleinian groups. Ergod. Th. & Dynam. Sys. 25(4) (2005), 13051323.
[Sta04]Stadlbauer, M.. The return sequence of the Bowen-Series map for punctured surfaces. Fund. Math. 182(3) (2004), 221240.
[Str95]Stratmann, B.. A note on counting cuspidal excursions. Ann. Acad. Sci. Fenn. Ser. A I Math. 20(2) (1995), 359372.
[Sul79]Sullivan, D.. The density at infinity of a discrete group of hyperbolic motions. Publ. Math. Inst. Hautes Études Sci. 1979(50) 171202.
[Sul82a]Sullivan, D.. Discrete conformal groups and measurable dynamics. Bull. Amer. Math. Soc. (N.S.) 6(1) (1982), 5773.
[Sul82b]Sullivan, D.. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. Acta Math. 149(3-4) (1982), 215237.
[Sul84]Sullivan, D.. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153(3–4) (1984), 259277.
[SV95]Stratmann, B. and Velani, S. L.. The Patterson measure for geometrically finite groups with parabolic elements, new and old. Proc. Lond. Math. Soc. (3) 71(1) (1995), 197220.
[Tha98]Thaler, M.. The Dynkin–Lamperti arc-sine laws for measure preserving transformations. Trans. Amer. Math. Soc. 350(11) (1998), 45934607.
[Wat54]Watson, G. S.. Extreme values in samples from $m$-dependent stationary stochastic processes. Ann. Math. Stat. 25 (1954), 798800.

A Fréchet law and an Erdős–Philipp law for maximal cuspidal windings

  • JOHANNES JAERISCH (a1), MARC KESSEBÖHMER (a2) and BERND O. STRATMANN (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed