Skip to main content Accessibility help
×
Home

Fast and slow points of Birkhoff sums

  • FRÉDÉRIC BAYART (a1) (a2), ZOLTÁN BUCZOLICH (a2) and YANICK HEURTEAUX (a1) (a2)

Abstract

We investigate the growth rate of the Birkhoff sums $S_{n,\unicode[STIX]{x1D6FC}}f(x)=\sum _{k=0}^{n-1}f(x+k\unicode[STIX]{x1D6FC})$ , where $f$ is a continuous function with zero mean defined on the unit circle $\mathbb{T}$ and $(\unicode[STIX]{x1D6FC},x)$ is a ‘typical’ element of $\mathbb{T}^{2}$ . The answer depends on the meaning given to the word ‘typical’. Part of the work will be done in a more general context.

Copyright

References

Hide All
[1] Atkinson, G.. Recurrence of co-cycles and random walks. J. Lond. Math. Soc. (2) 13(3) (1976), 486488.
[2] Beck, J.. Randomness of the square root of 2 and the giant leap, Part 1. Period. Math. Hungar. 60(2) (2010), 137242.
[3] Beck, J.. Randomness of the square root of 2 and the giant leap, Part 2. Period. Math. Hungar. 62(2) (2011), 127246.
[4] Billingsley, P.. Probability and Measure (Wiley Series in Probability and Statistics) . Wiley, New York, 1995.
[5] Bromberg, M. and Ulcigrai, C.. A temporal central limit theorem for real-valued cocycles over rotations. Ann. Inst. Henri Poincaré Probab. Stat. 54(4) (2018), 23042334.
[6] Doob, J. L.. Stochastic Processes (Wiley Publications in Statistics) . John Wiley & Sons Inc., New York; Chapman & Hall, Limited, London, 1953.
[7] Eisner, T., Farkas, B., Haase, M. and Nagel, R.. Operator Theoretic Aspects of Ergodic Theory (Graduate Texts in Mathematics) . Springer International Publishing, Cham, 2015.
[8] Fan, A. and Schmeling, J.. On fast Birkhoff averaging. Math. Proc. Cambridge Philos. Soc. 135 (2003), 443467.
[9] Fan, A. and Schmeling, J.. Everywhere divergence of one-sided ergodic Hilbert transform. Ann. Inst. Fourier (Grenoble) 68(6) (2018), 24772500.
[10] Herman, M.. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. Inst. Hautes Études Sci. 49 (1979), 5233.
[11] Huveneers, F.. Subdiffusive behavior generated by irrational rotations. Ergod. Th. & Dynam. Sys. 29(4) (2009), 12171233.
[12] Kahane, J.-P.. Séries de Fourier Absolument Convergentes (Ergebnisse der Mathematik und Ihrer Grenzgebiete) . Springer, Berlin, 1970.
[13] Kesten, H.. Uniform distribution mod 1. Ann. of Math. (2) 71 (1960), 445471.
[14] Kesten, H.. Uniform distribution mod 1. II. Acta Arith. 7 (1961/1962), 355380.
[15] Krengel, U.. On the speed of convergence in the ergodic theorem. Monatsh. Math. 86 (1978), 36.
[16] Kuipers, L. and Niederreiter, H.. Uniform Distribution of Sequences (Dover Books on Mathematics) . Dover Publications, Mineola, NY, 2006.
[17] Liardet, P. and Volný, D.. Continuous and differentiable functions in dynamical systems. Israel J. Math. 98 (1997), 2960.
[18] Rudin, W.. Fourier Analysis on Groups (Interscience Tracts in Pure and Applied Mathematics, 12) . Interscience Publishers, New York, 1962.
[19] Sinai, Y.. Topics in Ergodic Theory (Princeton Mathematical Series, 44) . Princeton University Press, Princeton, NY, 1994.
[20] Zajiček, L.. Porosity and 𝜎-porosity. Real Anal. Exchange 13 (1987–1988), 314350.

Keywords

MSC classification

Fast and slow points of Birkhoff sums

  • FRÉDÉRIC BAYART (a1) (a2), ZOLTÁN BUCZOLICH (a2) and YANICK HEURTEAUX (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed