[AB16]Austin, T. and Burton, P.. Uniform mixing and completely positive sofic entropy. J. Anal. Math. , to appear.

[AKM65]Adler, R. L., Konheim, A. G. and McAndrew, M. H.. Topological entropy. Trans. Amer. Math. Soc. 114 (1965), 309–319.

[Alp15]Alpeev, A.. The entropy of Gibbs measures on sofic groups. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 436 (2015), 34–48 (Teoriya Predstavlenii, Dinamicheskie Sistemy, Kombinatornye Metody. XXV).

[AR62]Abramov, L. M. and Rohlin, V. A.. Entropy of a skew product of mappings with invariant measure. Vestnik Leningrad. Univ. 17(7) (1962), 5–13.

[AS16]Alpeev, A. and Seward, B.. Krieger’s finite generator theorem for ergodic actions of countable groups III. *Preprint*, 2016.

[Aus16a]Austin, T.. Additivity properties of sofic entropy and measures on model spaces. Forum Math. Sigma 4 (2016), e25, 79.

[Aus16b]Austin, T.. Behaviour of entropy under bounded and integrable orbit equivalence. Geom. Funct. Anal. 26(6) (2016), 1483–1525.

[Aus16c]Austin, T.. The geometry of model spaces for probability-preserving actions of sofic groups. Anal. Geom. Metr. Spaces 4 (2016), Art. 6.

[AW13]Abért, M. and Weiss, B.. Bernoulli actions are weakly contained in any free action. Ergod. Th. & Dynam. Sys. 33(2) (2013), 323–333.

[Ax68]Ax, J.. The elementary theory of finite fields. Ann. of Math. (2) 88 (1968), 239–271.

[Bal05]Ball, K.. Factors of independent and identically distributed processes with non-amenable group actions. Ergod. Th. & Dynam. Sys. 25(3) (2005), 711–730.

[BdlHV08]Bekka, B., de la Harpe, P. and Valette, A.. Kazhdan’s Property (T). Cambridge University Press, New York, 2008.

[BG14]Bowen, L. and Gutman, Y.. A Juzvinskii addition theorem for finitely generated free group actions. Ergod. Th. & Dynam. Sys. 34(1) (2014), 95–109.

[BK17]Bartholdi, L. and Kielak, D.. Amenability of groups is characterized by Myhill’s Theorem. *J. Eur. Math. Soc.*, to appear.

[BL12]Bowen, L. and Li, H.. Harmonic models and spanning forests of residually finite groups. J. Funct. Anal. 263(7) (2012), 1769–1808.

[BM97]Burger, M. and Mozes, S.. Finitely presented simple groups and products of trees. C. R. Acad. Sci. Paris Sér. I Math. 324(7) (1997), 747–752.

[BM00]Burger, M. and Mozes, S.. Lattices in product of trees. Publ. Math. Inst. Hautes Études Sci. (92) (2000), 151–194, 2001.

[Bow08]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms *(Lecture Notes in Mathematics, 470)* revised edn.. Springer, Berlin, 2008. With a preface by David Ruelle, Edited by Jean-René Chazottes.

[Bow09]Bowen, L.. Free groups in lattices. Geom. Topol. 13(5) (2009), 3021–3054.

[Bow10a]Bowen, L.. The ergodic theory of free group actions: entropy and the *f*-invariant. Groups Geom. Dyn. 4(3) (2010), 419–432.

[Bow10b]Bowen, L.. Measure conjugacy invariants for actions of countable sofic groups. J. Amer. Math. Soc. 23(1) (2010), 217–245.

[Bow10c]Bowen, L.. Non-abelian free group actions: Markov processes, the Abramov–Rohlin formula and Yuzvinskii’s formula. Ergod. Th. & Dynam. Sys. 30(6) (2010), 1629–1663.

[Bow10d]Bowen, L. P.. A measure-conjugacy invariant for free group actions. Ann. of Math. (2) 171(2) (2010), 1387–1400.

[Bow11a]Bowen, L.. Entropy for expansive algebraic actions of residually finite groups. Ergod. Th. & Dynam. Sys. 31(3) (2011), 703–718.

[Bow11b]Bowen, L.. Weak isomorphisms between Bernoulli shifts. Israel J. Math. 183 (2011), 93–102.

[Bow12a]Bowen, L.. Every countably infinite group is almost Ornstein. Dynamical Systems and Group Actions *(Contemporary Mathematics, 567)*. American Mathematical Society, Providence, RI, 2012, pp. 67–78.

[Bow12b]Bowen, L.. Sofic entropy and amenable groups. Ergod. Th. & Dynam. Sys. 32(2) (2012), 427–466.

[Bow14]Bowen, L.. Entropy theory for sofic groupoids I: the foundations. J. Anal. Math. 124 (2014), 149–233.

[Bow16]Bowen, L.. Zero entropy is generic. Entropy 18(6) (2016), Paper No. 220, 20.

[Bow17]Bowen, L.. Finitary random interlacements and the Gaboriau–Lyons problem. *Preprint*, 2017,arXiv:1707.09573.

[BS94]Burton, R. and Steif, J. E.. Non-uniqueness of measures of maximal entropy for subshifts of finite type. Ergod. Th. & Dynam. Sys. 14(2) (1994), 213–235.

[BS95]Burton, R. and Steif, J. E.. New results on measures of maximal entropy. Israel J. Math. 89(1–3) (1995), 275–300.

[BS01]Benjamini, I. and Schramm, O.. Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23) (2001), 13 (electronic).

[Bur17]Burton, P.. Naive entropy of dynamical systems. Israel J. Math. 219(2) (2017), 637–659.

[CHR14]Ciobanu, L., Holt, D. F. and Rees, S.. Sofic groups: graph products and graphs of groups. Pacific J. Math. 271(1) (2014), 53–64.

[Chu13]Chung, N.-P.. Topological pressure and the variational principle for actions of sofic groups. Ergod. Th. & Dynam. Sys. 33(5) (2013), 1363–1390.

[CL15a]Capraro, V. and Lupini, M.. Introduction to Sofic and Hyperlinear Groups and Connes’ Embedding Conjecture *(Lecture Notes in Mathematics, 2136)*. Springer, Cham, 2015. With an appendix by Vladimir Pestov.

[CL15b]Chung, N.-P. and Li, H.. Homoclinic groups, IE groups, and expansive algebraic actions. Invent. Math. 199(3) (2015), 805–858.

[Cor11]Cornulier, Y.. A sofic group away from amenable groups. Math. Ann. 2 (2011), 269–275.

[CZ15]Chung, N.-P. and Zhang, G.. Weak expansiveness for actions of sofic groups. J. Funct. Anal. 268(11) (2015), 3534–3565.

[Dan01]Danilenko, A. I.. Entropy theory from the orbital point of view. Monatsh. Math. 134(2) (2001), 121–141.

[Den06]Deninger, C.. Fuglede–Kadison determinants and entropy for actions of discrete amenable groups. J. Amer. Math. Soc. 19(3) (2006), 737–758 (electronic).

[DG02]Dooley, A. H. and Golodets, V. Ya.. The spectrum of completely positive entropy actions of countable amenable groups. J. Funct. Anal. 196(1) (2002), 1–18.

[DGRS08]Dooley, A. H., Golodets, V. Ya., Rudolph, D. J. and Sinel’shchikov, S. D.. Non-Bernoulli systems with completely positive entropy. Ergod. Th. & Dynam. Sys. 28(1) (2008), 87–124.

[Din70]Dinaburg, E. I.. A correlation between topological entropy and metric entropy. Dokl. Akad. Nauk SSSR 190 (1970), 19–22.

[DKP14]Dykema, K., Kerr, D. and Pichot, M.. Sofic dimension for discrete measured groupoids. Trans. Amer. Math. Soc. 366(2) (2014), 707–748.

[DM10a]Dembo, A. and Montanari, A.. Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat. 24(2) (2010), 137–211.

[DM10b]Dembo, A. and Montanari, A.. Ising models on locally tree-like graphs. Ann. Appl. Probab. 20(2) (2010), 565–592.

[Dow11]Downarowicz, T.. Entropy in Dynamical Systems *(New Mathematical Monographs, 18)*. Cambridge University Press, Cambridge, 2011.

[DP02]Danilenko, A. I. and Park, K. K.. Generators and Bernoullian factors for amenable actions and cocycles on their orbits. Ergod. Th. & Dynam. Sys. 22(6) (2002), 1715–1745.

[DS07]Deninger, C. and Schmidt, K.. Expansive algebraic actions of discrete residually finite amenable groups and their entropy. Ergod. Th. & Dynam. Sys. 27(3) (2007), 769–786.

[Dye59]Dye, H. A.. On groups of measure preserving transformation. I. Amer. J. Math. 81 (1959), 119–159.

[Dye63]Dye, H. A.. On groups of measure preserving transformations. II. Amer. J. Math. 85 (1963), 551–576.

[Eps08]Epstein, I.. Orbit inequivalent actions of non-amenable groups. *Preprint*, 2008, arXiv:0707.4215.

[ES04]Elek, G. and Szabó, E.. Sofic groups and direct finiteness. J. Algebra 280(2) (2004), 426–434.

[ES05]Elek, G. and Szabó, E.. Hyperlinearity, essentially free actions and *L* ^{2} -invariants. The sofic property. Math. Ann. 332(2) (2005), 421–441.

[ES06]Elek, G. and Szabó, E.. On sofic groups. J. Group Theory 9(2) (2006), 161–171.

[ES11]Elek, G. and Szabó, E.. Sofic representations of amenable groups. Proc. Amer. Math. Soc. 139(12) (2011), 4285–4291.

[ES12]Elek, G. and Szegedy, B.. A measure-theoretic approach to the theory of dense hypergraphs. Adv. Math. 231(3–4) (2012), 1731–1772.

[FO70]Friedman, N. A. and Ornstein, D. S.. On isomorphism of weak Bernoulli transformations. Adv. Math. 5(1970) (1970), 365–394.

[FW04]Foreman, M. and Weiss, B.. An anti-classification theorem for ergodic measure preserving transformations. J. Eur. Math. Soc. (JEMS) 6(3) (2004), 277–292.

[Gab17]Gaboriau, D.. Entropie sofique. Astérisque 390 (2017), 101–138 , Exp. No. 1108, Séminaire Bourbaki 2015/2016. Exposés 1104–1119.

[Geo11]Georgii, H.-O.. Gibbs Measures and Phase Transitions *(de Gruyter Studies in Mathematics, 9)*, 2nd edn. Walter de Gruyter & Co, Berlin, 2011.

[GL09]Gaboriau, D. and Lyons, R.. A measurable-group-theoretic solution to von Neumann’s problem. Invent. Math. 177(3) (2009), 533–540.

[Gla03]Glasner, E.. Ergodic Theory Via Joinings *(Mathematical Surveys and Monographs, 101)*. American Mathematical Society, Providence, RI, 2003.

[Goo69]Wayne Goodwyn, L.. Topological entropy bounds measure-theoretic entropy. Proc. Amer. Math. Soc. 23 (1969), 679–688.

[Goo71]Goodman, T. N. T.. Relating topological entropy and measure entropy. Bull. Lond. Math. Soc. 3 (1971), 176–180.

[Goo72]Wayne Goodwyn, L.. Comparing topological entropy with measure-theoretic entropy. Amer. J. Math. 94 (1972), 366–388.

[Gro99]Gromov, M.. Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc. (JEMS) 1(2) (1999), 109–197.

[GS00a]Golodets, V. Ya. and Sinel’shchikov, S. D.. Complete positivity of entropy and non-Bernoullicity for transformation groups. Colloq. Math. 84/85(part 2) (2000), 421–429. Dedicated to the memory of Anzelm Iwanik.

[GS00b]Greschonig, G. and Schmidt, K.. Ergodic decomposition of quasi-invariant probability measures. Colloq. Math. 84/85(part 2) (2000), 495–514. Dedicated to the memory of Anzelm Iwanik.

[GS15]Gaboriau, D. and Seward, B.. Cost, *ℓ* ^{2} -Betti numbers, and the sofic entropy of some algebraic actions. J. Anal. Math. *Preprint*, 2015, arXiv:1509.02482.

[GTW00]Glasner, E., Thouvenot, J.-P. and Weiss, B.. Entropy theory without a past. Ergod. Th. & Dynam. Sys. 20(5) (2000), 1355–1370.

[Hay17]Hayes, B.. Mixing and spectral gap relative to Pinsker factors for sofic groups. Proc. 2014 Maui and 2015 Qinhuangdao Conferences in Honour of Vaughan F. R. Jones’ 60th Birthday *(Proc. Centre Math. Appl. Austral. Nat. Univ., 46)*. Australian National University, Canberra, 2017, pp. 193–221.

[Hay16a]Hayes, B.. Local and doubly empirical convergence and the entropy of algebraic actions of sofic groups. Ergod. Th. & Dynam. Sys. , to appear. *Preprint*, 2016, arXiv:1603.06450.

[Hay16b]Hayes, B.. Fuglede–Kadison determinants and sofic entropy. Geom. Funct. Anal. 26(2) (2016), 520–606.

[Hay16c]Hayes, B.. Relative entropy and the Pinsker product formula for sofic groups. *Preprint*, 2016, arXiv:1605.01747.

[Hay17a]Hayes, B.. Independence tuples and Deninger’s problem. Groups Geom. Dyn. 11(1) (2017), 245–289.

[Hay17b]Hayes, B.. Sofic entropy of Gaussian actions. Ergod. Th. & Dynam. Sys. 37(7) (2017), 2187–2222.

[Hay18]Hayes, B.. Polish models and sofic entropy. J. Inst. Math. Jussieu 17(2) (2018), 241–275.

[HLS14]Hatami, H., Lovász, L. and Szegedy, B.. Limits of locally-globally convergent graph sequences. Geom. Funct. Anal. 24(1) (2014), 269–296.

[Hof11]Hoffman, C.. Subshifts of finite type which have completely positive entropy. Discrete Contin. Dyn. Syst. 29(4) (2011), 1497–1516.

[HS16]Hayes, B. and Sale, A.. The wreath product of two sofic groups is sofic. *Preprint*, 2016, arXiv:1601.03286.

[HS18]Hayes, B. and Sale, A. W.. Metric approximations of wreath products. Ann. Inst. Fourier (Grenoble) 68(1) (2018), 423–455.

[IKT09]Ioana, A., Kechris, A. S. and Tsankov, T.. Subequivalence relations and positive-definite functions. Groups Geom. Dyn. 3(4) (2009), 579–625.

[Juz65a]Juzvinskiĭ, S. A.. Metric properties of automorphisms of locally compact commutative groups. Sibirsk. Mat. Ž. 6 (1965), 244–247.

[Juz65b]Juzvinskiĭ, S. A.. Metric properties of the endomorphisms of compact groups. Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 1295–1328.

[Kec10]Kechris, A. S.. Global Aspects of Ergodic Group Actions *(Mathematical Surveys and Monographs, 160)*. American Mathematical Society, Providence, RI, 2010.

[Kel98]Keller, G.. Equilibrium States in Ergodic Theory *(London Mathematical Society Student Texts, 42)*. Cambridge University Press, Cambridge, 1998.

[Ker13]Kerr, D.. Sofic measure entropy via finite partitions. Groups Geom. Dyn. 7(3) (2013), 617–632.

[Ker14]Kerr, D.. Bernoulli actions of sofic groups have completely positive entropy. Israel J. Math. 202(1) (2014), 461–474.

[Key70]Keynes, H. B.. Lifting of topological entropy. Proc. Amer. Math. Soc. 24 (1970), 440–445.

[KH95]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems *(Encyclopedia of Mathematics and its Applications, 54)*. Cambridge University Press, Cambridge, 1995, with a supplementary chapter by Katok and Leonardo Mendoza.

[Kid08]Kida, Y.. Orbit equivalence rigidity for ergodic actions of the mapping class group. Geom. Dedicata 131 (2008), 99–109.

[Kie75]Kieffer, J. C.. A generalized Shannon–McMillan theorem for the action of an amenable group on a probability space. Ann. Probab. 3(6) (1975), 1031–1037.

[KL11a]Kerr, D. and Li, H.. Bernoulli actions and infinite entropy. Groups Geom. Dyn. 5(3) (2011), 663–672.

[KL11b]Kerr, D. and Li, H.. Entropy and the variational principle for actions of sofic groups. Invent. Math. 186(3) (2011), 501–558.

[KL13a]Kerr, D. and Li, H.. Combinatorial independence and sofic entropy. Commun. Math. Stat. 1(2) (2013), 213–257.

[KL13b]Kerr, D. and Li, H.. Soficity, amenability, and dynamical entropy. Amer. J. Math. 135(3) (2013), 721–761.

[KL16]Kerr, D. and Li, H.. Ergodic Theory *(Springer Monographs in Mathematics)*. Springer, Cham, 2016, Independence and dichotomies.

[Kol58]Kolmogorov, A. N.. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 861–864.

[Kol59]Kolmogorov, A. N.. Entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 124 (1959), 754–755.

[Kri70]Krieger, W.. On entropy and generators of measure-preserving transformations. Trans. Amer. Math. Soc. 149 (1970), 453–464.

[Kun16]Kun, G.. On sofic approximations of property (T) groups. *Preprint*, 2016, arXiv:1606.04471.

[Li12]Li, H.. Compact group automorphisms, addition formulas and Fuglede–Kadison determinants. Ann. of Math. (2) 176(1) (2012), 303–347.

[LL16]Li, H. and Liang, B.. Sofic mean length. Adv. Math. , to appear.

[LSW90]Lind, D., Schmidt, K. and Ward, T.. Mahler measure and entropy for commuting automorphisms of compact groups. Invent. Math. 101(3) (1990), 593–629.

[LT14]Li, H. and Thom, A.. Entropy, determinants, and *L* ^{2} -torsion. J. Amer. Math. Soc. 27(1) (2014), 239–292.

[Mal40]Malcev, A.. On isomorphic matrix representations of infinite groups. Rec. Math. [Mat. Sbornik] N.S. 8(50) (1940), 405–422.

[MB09]Miles, R. and Björklund, M.. Entropy range problems and actions of locally normal groups. Discrete Contin. Dyn. Syst. 25(3) (2009), 981–989.

[Mey16]Meyerovitch, T.. Positive sofic entropy implies finite stabilizer. Entropy 18(7) (2016), 14, Paper No. 263.

[Mil08]Miles, R.. The entropy of algebraic actions of countable torsion-free abelian groups. Fund. Math. 201(3) (2008), 261–282.

[Mis76]Misiurewicz, M.. A short proof of the variational principle for a **Z**_{+}^{N} action on a compact space. Astérisque 40 (1976), 147–157.

[MO85]Moulin Ollagnier, J.. Ergodic Theory and Statistical Mechanics *(Lecture Notes in Mathematics, 1115)*. Springer, Berlin, 1985.

[Ol'91]Ol’shanskiĭ, A. Yu.. Geometry of Defining Relations in Groups *(Mathematics and its Applications (Soviet Series), 70)*. Kluwer Academic Publishers Group, Dordrecht, 1991, translated from the 1989 Russian original by Yu. A. Bakhturin.

[OP10]Ozawa, N. and Popa, S.. On a class of II_{1} factors with at most one Cartan subalgebra. Ann. of Math. (2) 172(1) (2010), 713–749.

[Orn70a]Ornstein, D.. Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4(1970) (1970), 337–352.

[Orn70b]Ornstein, D.. Factors of Bernoulli shifts are Bernoulli shifts. Adv. Math. 5(1970) (1970), 349–364.

[Orn70c]Ornstein, D.. Two Bernoulli shifts with infinite entropy are isomorphic. Adv. Math. 5(1970) (1970), 339–348.

[OW80]Ornstein, D. S. and Weiss, B.. Ergodic theory of amenable group actions. I. The Rohlin lemma. Bull. Amer. Math. Soc. (N.S.) 2(1) (1980), 161–164.

[OW87]Ornstein, D. S. and Weiss, B.. Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48 (1987), 1–141.

[OW07]Ornstein, D. and Weiss, B.. Entropy is the only finitely observable invariant. J. Mod. Dyn. 1(1) (2007), 93–105.

[Pău11]Păunescu, L.. On sofic actions and equivalence relations. J. Funct. Anal. 261(9) (2011), 2461–2485.

[Pes08]Pestov, V. G.. Hyperlinear and sofic groups: a brief guide. Bull. Symbolic Logic 14(4) (2008), 449–480.

[Pet89]Petersen, K.. Ergodic Theory *(Cambridge Studies in Advanced Mathematics, 2)*. Cambridge University Press, Cambridge, 1989, corrected reprint of the 1983 original.

[PK09]Pestov, V. G. and Kwiatkowska, A.. An introduction to hyperlinear and sofic groups. Appalachian Set Theory *(London Mathematical Society Lecture Notes Series)* , to appear. *Preprint*, 2009, arXiv:0911.4266v2.

[Pop06a]Popa, S.. Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions. J. Inst. Math. Jussieu 5(2) (2006), 309–332.

[Pop06b]Popa, S.. Strong rigidity of II_{1} factors arising from malleable actions of *w*-rigid groups. II. Invent. Math. 165(2) (2006), 409–451.

[Pop07]Popa, S.. Cocycle and orbit equivalence superrigidity for malleable actions of *w*-rigid groups. Invent. Math. 170(2) (2007), 243–295.

[Pop08]Popa, S.. On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc. 21(4) (2008), 981–1000.

[PS07]Popa, S. and Sasyk, R.. On the cohomology of Bernoulli actions. Ergod. Th. & Dynam. Sys. 27(1) (2007), 241–251.

[Roh67]Rohlin, V. A.. Lectures on the entropy theory of transformations with invariant measure. Uspekhi Mat. Nauk 22(5 (137)) (1967), 3–56.

[Rud78]Rudolph, D. J.. If a finite extension of a Bernoulli shift has no finite rotation factors, it is Bernoulli. Israel J. Math. 30(3) (1978), 193–206.

[Rud90]Rudolph, D. J.. Fundamentals of Measurable Dynamics *(Oxford Science Publications)*. The Clarendon Press, Oxford University Press, New York, 1990, Ergodic theory on Lebesgue spaces.

[RW00]Rudolph, D. J. and Weiss, B.. Entropy and mixing for amenable group actions. Ann. of Math. (2) 151(3) (2000), 1119–1150.

[Sch95]Schmidt, K.. Dynamical Systems of Algebraic Origin *(Modern Birkhäuser Classics)*. Birkhäuser/Springer Basel AG, Basel, 1995, 2011 reprint of the 1995 original.

[Sew14a]Seward, B.. Every action of a nonamenable group is the factor of a small action. J. Mod. Dyn. 8(2) (2014), 251–270.

[Sew14b]Seward, B.. A subgroup formula for *f*-invariant entropy. Ergod. Th. & Dynam. Sys. 34(1) (2014), 263–298.

[Sew15a]Seward, B.. Ergodic actions of countable groups and finite generating partitions. Groups Geom. Dyn. 9(3) (2015), 793–810.

[Sew15b]Seward, B.. Krieger’s finite generator theorem for ergodic actions of countable groups II. J. Mod. Dynam. , to appear.

[Sew16a]Seward, B.. Finite entropy actions of free groups, rigidity of stabilizers, and a Howe–Moore type phenomenon. J. Anal. Math. 129 (2016), 309–340.

[Sew16b]Seward, B.. Weak containment and Rokhlin entropy. *Preprint*, 2016, arXiv:1602.06680.

[Sew18]Seward, B.. Positive entropy actions of countable groups factor onto Bernoulli shifts. J. Amer. Math. Soc. , to appear.

[Sew19]Seward, B.. Krieger’s finite generator theorem for actions of countable groups I. Invent. Math. 215(1) (2019), 265–310.

[Sin64]Sinaĭ, Ja. G.. On a weak isomorphism of transformations with invariant measure. Mat. Sb. (N.S.) 63(105) (1964), 23–42.

[ST75]Shields, P. and Thouvenot, J.-P.. Entropy zero × Bernoulli processes are closed in the *d*̄-metric. Ann. Probab. 3(4) (1975), 732–736.

[STD16]Seward, B. and Tucker-Drob, R. D.. Borel structurability on the 2-shift of a countable group. Ann. Pure Appl. Logic 167(1) (2016), 1–21.

[Ste75]Stepin, A. M.. Bernoulli shifts on groups. Dokl. Akad. Nauk SSSR 223(2) (1975), 300–302.

[Tho71]Thomas, R. K.. The addition theorem for the entropy of transformations of *G*-spaces. Trans. Amer. Math. Soc. 160 (1971), 119–130.

[Tho75]Thouvenot, J.-P.. Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schéma de Bernoulli. Israel J. Math 21(2–3) (1975), 177–207. Conference on Ergodic Theory and Topological Dynamics (Kibbutz, Lavi, 1974).

[Tho10]Thom, A.. Examples of hyperlinear groups without factorization property. Groups Geom. Dyn. 4(1) (2010), 195–208.

[Wei00]Weiss, B.. Sofic groups and dynamical systems. Sankhyā Ser. A 62(3) (2000), 350–359. Conference on Ergodic Theory and Harmonic Analysis (Mumbai, 1999).

[Wei03]Weiss, B.. Actions of amenable groups. Topics in Dynamics and Ergodic Theory *(London Mathematical Society Lecture Note Series, 310)*. Cambridge University Press, Cambridge, 2003, pp. 226–262.

[Wei15]Weiss, B.. Entropy and actions of sofic groups. Discrete Contin. Dyn. Syst. Ser. B 20(10) (2015), 3375–3383.

[WZ92]Ward, T. and Zhang, Q.. The Abramov–Rokhlin entropy addition formula for amenable group actions. Monatsh. Math. 114(3–4) (1992), 317–329.

[Zha12]Zhang, G.. Local variational principle concerning entropy of sofic group action. J. Funct. Anal. 262(4) (2012), 1954–1985.

[Zim84]Zimmer, R. J.. Ergodic Theory and Semisimple Groups *(Monographs in Mathematics, 81)*. Birkhäuser, Basel, 1984.