Skip to main content Accessibility help

Equidistribution of Farey sequences on horospheres in covers of $\text{SL}(n+1,\mathbb{Z})\backslash \text{SL}(n+1,\mathbb{R})$ and applications



We establish the limiting distribution of certain subsets of Farey sequences, i.e., sequences of primitive rational points, on expanding horospheres in covers $\unicode[STIX]{x1D6E5}\backslash \text{SL}(n+1,\mathbb{R})$ of $\text{SL}(n+1,\mathbb{Z})\backslash \text{SL}(n+1,\mathbb{R})$ , where $\unicode[STIX]{x1D6E5}$ is a finite-index subgroup of $\text{SL}(n+1,\mathbb{Z})$ . These subsets can be obtained by projecting to the hyperplane $\{(x_{1},\ldots ,x_{n+1})\in \mathbb{R}^{n+1}:x_{n+1}=1\}$ sets of the form $\mathbf{A}=\bigcup _{j=1}^{J}\mathbf{a}_{j}\unicode[STIX]{x1D6E5}$ , where for all $j$ , $\mathbf{a}_{j}$ is a primitive lattice point in $\mathbb{Z}^{n+1}$ . Our method involves applying the equidistribution of expanding horospheres in quotients of $\text{SL}(n+1,\mathbb{R})$ developed by Marklof and Strömbergsson, and more precisely understanding how the full Farey sequence distributes in $\unicode[STIX]{x1D6E5}\backslash \text{SL}(n+1,\mathbb{R})$ when embedded on expanding horospheres as done in previous work by Marklof. For each of the Farey sequence subsets, we extend the statistical results by Marklof regarding the full multidimensional Farey sequences, and solutions by Athreya and Ghosh to Diophantine approximation problems of Erdős–Szüsz–Turán and Kesten. We also prove that Marklof’s result on the asymptotic distribution of Frobenius numbers holds for sets of primitive lattice points of the form $\mathbf{A}$ .



Hide All
[1] Athreya, J. S. and Cheung, Y.. A Poincaré section for the horocycle flow on the space of lattices. Int. Math. Res. Not. IMRN 2014(10) (2014), 26432690.
[2] Athreya, J. S. and Ghosh, A.. The Erdős–Szüsz–Turán distribution for equivariant processes. Enseign. Math. (2) 64 (2018), 121.
[3] Bass, H., Lazard, M. and Serre, J.-P.. Sous-groupes d’indice fini dans SL(n, ℤ). Bull. Amer. Math. Soc. 70 (1964), 385392.
[4] Boca, F. P.. A problem of Erdős, Szüsz, and Turán concerning diophantine approximations. Int. J. Number Theory 4(4) (2008), 691708.
[5] Boca, F. P., Cobeli, C. and Zaharescu, A.. A conjecture of R. R. Hall on Farey points. J. Reine Angew. Math. 535 (2001), 207236.
[6] Einsiedler, M., Mozes, S., Shah, N. and Shapira, U.. Equidistribution of primitive rational points on expanding horospheres. Compos. Math. 152(4) (2016), 667692.
[7] Erdős, P., Szüsz, P. and Turán, P.. Remarks on the theory of Diophantine approximation. Colloq. Math. 6 (1958), 119126.
[8] Eskin, A. and McMullen, C.. Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71(1) (1993), 181209.
[9] Fisher, A. M. and Schmidt, T. A.. Distribution of approximants and geodesic flows. Ergod. Th. & Dynam. Sys. 34(6) (2014), 18321848.
[10] Heersink, B.. Poincaré sections for the horocycle flow in covers of SL(2, ℝ)/SL(2, ℤ) and applications to Farey fraction statistics. Monatsh. Math. 179(3) (2016), 389420.
[11] Kesten, H.. Some probabilistic theorems on Diophantine approximations. Trans. Amer. Math. Soc. 103 (1962), 189217.
[12] Kesten, H. and Sós, V. T.. On two problems of Erdős, Szüsz and Turán concerning diophantine approximations. Acta Arith. 12 (1966–1967), 183192.
[13] Lee, M. and Marklof, J.. Effective equidistribution of rational points on expanding horospheres. Int. Math. Res. Not. IMRN 2018(21) (2018), 65816610.
[14] Li, H.. Effective limit distribution of the Frobenius numbers. Compos. Math. 151(5) (2015), 898916.
[15] Marklof, J.. The asymptotic distribution of Frobenius numbers. Invent. Math. 181(1) (2010), 179207.
[16] Marklof, J.. Horospheres and Farey fractions. Dynamical Numbers: Interplay Between Dynamical Systems and Number Theory (Contemporary Mathematics, 532) . American Mathematical Society, Providence, RI, 2010, pp. 97106.
[17] Marklof, J.. Fine-scale statistics for the multidimensional Farey sequence. Limit Theorems in Probability, Statistics and Number Theory (Springer Proceedings in Mathematics and Statistics, 42) . Springer, Heidelberg, 2013, pp. 4957.
[18] Marklof, J. and Strömbergsson, A.. The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Ann. of Math. (2) 172(3) (2010), 19492033.
[19] Mennicke, J. L.. Finite factor groups of the unimodular group. Ann. of Math. (2) 81 (1965), 3137.
[20] Ratner, M.. On Raghunathan’s measure conjecture. Ann. of Math. (2) 134(3) (1991), 545607.
[21] Shah, N.. Limit distributions of expanding translates of certain orbits on homogeneous spaces. Proc. Indian Acad. Sci. Math. Sci. 106(2) (1996), 105125.
[22] Xiong, M. and Zaharescu, A.. A problem of Erdős–Szüsz–Turán on diophantine approximation. Acta Arith. 125(2) (2006), 163177.


MSC classification

Equidistribution of Farey sequences on horospheres in covers of $\text{SL}(n+1,\mathbb{Z})\backslash \text{SL}(n+1,\mathbb{R})$ and applications



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed