[1]
Athreya, J. S. and Cheung, Y.. A Poincaré section for the horocycle flow on the space of lattices. Int. Math. Res. Not. IMRN
2014(10) (2014), 2643–2690.
[2]
Athreya, J. S. and Ghosh, A.. The Erdős–Szüsz–Turán distribution for equivariant processes. Enseign. Math. (2)
64 (2018), 1–21.
[3]
Bass, H., Lazard, M. and Serre, J.-P.. Sous-groupes d’indice fini dans SL(n, ℤ). Bull. Amer. Math. Soc.
70 (1964), 385–392.
[4]
Boca, F. P.. A problem of Erdős, Szüsz, and Turán concerning diophantine approximations. Int. J. Number Theory
4(4) (2008), 691–708.
[5]
Boca, F. P., Cobeli, C. and Zaharescu, A.. A conjecture of R. R. Hall on Farey points. J. Reine Angew. Math.
535 (2001), 207–236.
[6]
Einsiedler, M., Mozes, S., Shah, N. and Shapira, U.. Equidistribution of primitive rational points on expanding horospheres. Compos. Math.
152(4) (2016), 667–692.
[7]
Erdős, P., Szüsz, P. and Turán, P.. Remarks on the theory of Diophantine approximation. Colloq. Math.
6 (1958), 119–126.
[8]
Eskin, A. and McMullen, C.. Mixing, counting, and equidistribution in Lie groups. Duke Math. J.
71(1) (1993), 181–209.
[9]
Fisher, A. M. and Schmidt, T. A.. Distribution of approximants and geodesic flows. Ergod. Th. & Dynam. Sys.
34(6) (2014), 1832–1848.
[10]
Heersink, B.. Poincaré sections for the horocycle flow in covers of SL(2, ℝ)/SL(2, ℤ) and applications to Farey fraction statistics. Monatsh. Math.
179(3) (2016), 389–420.
[11]
Kesten, H.. Some probabilistic theorems on Diophantine approximations. Trans. Amer. Math. Soc.
103 (1962), 189–217.
[12]
Kesten, H. and Sós, V. T.. On two problems of Erdős, Szüsz and Turán concerning diophantine approximations. Acta Arith.
12 (1966–1967), 183–192.
[13]
Lee, M. and Marklof, J.. Effective equidistribution of rational points on expanding horospheres. Int. Math. Res. Not. IMRN
2018(21) (2018), 6581–6610.
[14]
Li, H.. Effective limit distribution of the Frobenius numbers. Compos. Math.
151(5) (2015), 898–916.
[15]
Marklof, J.. The asymptotic distribution of Frobenius numbers. Invent. Math.
181(1) (2010), 179–207.
[16]
Marklof, J.. Horospheres and Farey fractions. Dynamical Numbers: Interplay Between Dynamical Systems and Number Theory
(Contemporary Mathematics, 532)
. American Mathematical Society, Providence, RI, 2010, pp. 97–106.
[17]
Marklof, J.. Fine-scale statistics for the multidimensional Farey sequence. Limit Theorems in Probability, Statistics and Number Theory
(Springer Proceedings in Mathematics and Statistics, 42)
. Springer, Heidelberg, 2013, pp. 49–57.
[18]
Marklof, J. and Strömbergsson, A.. The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Ann. of Math. (2)
172(3) (2010), 1949–2033.
[19]
Mennicke, J. L.. Finite factor groups of the unimodular group. Ann. of Math. (2)
81 (1965), 31–37.
[20]
Ratner, M.. On Raghunathan’s measure conjecture. Ann. of Math. (2)
134(3) (1991), 545–607.
[21]
Shah, N.. Limit distributions of expanding translates of certain orbits on homogeneous spaces. Proc. Indian Acad. Sci. Math. Sci.
106(2) (1996), 105–125.
[22]
Xiong, M. and Zaharescu, A.. A problem of Erdős–Szüsz–Turán on diophantine approximation. Acta Arith.
125(2) (2006), 163–177.