[1]
Akin, E. and Kolyada, S.. Li–Yorke sensitivity. Nonlinearity
16 (2003), 1421–1433.

[2]
Ashwin, P., Aston, P. J. and Nicol, M.. On the unfolding of a blowout bifurcation. Phys. D
111(1–4) (1998), 81–95.

[3]
Ashwin, P. and Field, M.. Heteroclinic networks in coupled cell systems. Arch. Ration. Mech. Anal.
148(2) (1999), 107–143.

[4]
Barreira, L.. Thermodynamic Formalism and Applications to Dimension Theory. Springer Science & Business Media, 2011.

[5]
Barreira, L. and Doutor, P.. Almost additive multi-fractal analysis. J. Math. Pures Appl. (9)
92 (2009), 1–17.

[6]
Barreira, L. and Saussol, B.. Variational principles and mixed multifractal spectra. Trans. Amer. Math. Soc.
353(10) (2001), 3919–3944.

[7]
Barreira, L. and Schmeling, J.. Sets of non-typical points have full topological entropy and full Hausdorff dimension. Israel J. Math.
116 (2000), 29–70.

[8]
Blanchard, F., Glasner, E., Kolyada, S. and Maass, A.. On Li–Yorke pairs. J. Reine Angew. Math.
547 (2002), 51–68.

[9]
Blanchard, F., Huang, W. and Snoha, L.. Topological size of scrambled sets. Colloq. Math.
110 (2008), 293–361.

[10]
Bowen, R.. Periodic points and measures for axiom a diffeomorphisms. Trans. Amer. Math. Soc.
154 (1971), 377–397.

[11]
Bruckner, A. M. and Hu, T.. On scrambled sets for chaotic functions. Trans. Amer. Math. Soc.
301 (1987), 289–297.

[12]
Buzzi, J.. Specification on the interval. Trans. Amer. Math. Soc.
349(7) (1997), 2737–2754.

[13]
Chen, E., Kupper, T. and Shu, L.. Topological entropy for divergence points. Ergod. Th. & Dynam. Sys.
25(4) (2005), 1173–1208.

[14]
Climenhaga, V.. Topological pressure of simultaneous level sets. Nonlinearity
26(1) (2013), 241–268.

[15]
Climenhaga, V., Thompson, D. and Yamamoto, K.. Large deviations for systems with non-uniform structure. Trans. Amer. Math. Soc.
369(6) (2017), 4167–4192.

[16]
Dateyama, M.. Invariant measures for homeomorphisms with almost weak specification. Tokyo J. Math.
04 (1981), 93–96.

[17]
Denker, M., Grillenberger, C. and Sigmund, K.. Ergodic Theory on Compact Spaces
*(Lecture Notes in Mathematics, 527)*
. Springer, Berlin, 1976, p. 177.

[18]
Devaney, R.. A First Course in Chaotic Dynamical Systems. Perseus Books, 1992.

[19]
Dong, Y., Oprocha, P. and Tian, X.. On the irregular points for systems with the shadowing property. Ergod. Th. & Dynam. Sys.
38(6) (2018), 2108–2131.

[20]
Dong, Y. and Tian, X.. Different statistical future of dynamical orbits over expanding or hyperbolic systems (I): empty syndetic center. *Preprint*, 2017, arXiv:1701.01910v2. [21]
Dong, Y. and Tian, X.. Different statistical future of dynamical orbits over expanding or hyperbolic systems (II): nonempty syndetic center. *Preprint*, 2018, arXiv:1803.06796. [22]
Downarowicz, T.. Positive topological entropy implies chaos DC2. Proc. Amer. Math. Soc.
142(1) (2012), 137–149.

[23]
Eizenberg, A., Kifer, Y. and Weiss, B.. Large deviations for *Z*
^{
d
}-actions. Commun. Math. Phys.
164(3) (1994), 433–454.

[24]
Fan, A., Feng, D. and Wu, J.. Recurrence, dimensions and entropy. J. Lond. Math. Soc. (2)
64 (2001), 229–244.

[25]
Feng, D. and Huang, W.. Lyapunov spectrum of asymptotically sub-additive potentials. Commun. Math. Phys.
297(1) (2010), 1–43.

[26]
Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, 1981.

[27]
He, W., Yin, J. and Zhou, Z.. On quasi-weakly almost periodic points. Sci. China Math.
56(3) (2013), 597–606.

[28]
Huang, Y., Tian, X. and Wang, X.. Transitively-saturated property, Banach recurrence and Lyapunov regularity. Nonlinearity
32(7) (2019), 2721–2757.

[29]
Huang, Y. and Wang, X.. Recurrence of transitive points in dynamical systems with the specification property. Acta Math. Sin. (Engl. Ser.) (2018), 1879–1891.

[30]
Jakobson, M. V.. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys.
81(1) (1981), 39–88.

[31]
Kan, I.. A chaotic function possessing a scrambled set with positive Lebesgue measure. Proc. Amer. Math. Soc.
92 (1984), 45–49.

[32]
Kiriki, S. and Soma, T.. Takens’ last problem and existence of non-trivial wandering domains. Adv. Math.
306 (2017), 524–588.

[33]
Kościelniak, P.. On genericity of shadowing and periodic shadowing property. J. Math. Anal. Appl.
310 (2005), 188–196.

[34]
Kościelniak, P.. On the genericity of chaos. Topol. Appl.
154 (2007), 1951–1955.

[35]
Koscielniak, P., Mazur, M., Oprocha, P. and Pilarczyk, P.. Shadowing is generic-a continuous map case. Discrete Contin. Dyn. Syst.
34(9) (2014), 3591–3609.

[36]
Kwietniak, D., Oprocha, P. and Rams, M.. On entropy of dynamical systems with almost specification. Israel J. Math.
213(1) (2016), 475–503.

[37]
Li, T. Y. and Yorke, J. A.. Period three implies chaos. Amer. Math. Monthly
82(10) (1975), 985–992.

[38]
Liang, C., Liao, G., Sun, W. and Tian, X.. Variational equalities of entropy in nonuniformly hyperbolic systems. Trans. Amer. Math. Soc.
369(5) (2017), 3127–3156.

[39]
Liang, C., Sun, W. and Tian, X.. Ergodic properties of invariant measures for *C*
^{1+𝛼} non-uniformly hyperbolic systems. Ergod. Th. & Dynam. Sys.
33(2) (2013), 560–584.

[40]
Nemytskii, V. and Stepanov, V.. Qualitative Theory of Differential Equations, Vol. 2083. Princeton University Press, 2015 (Originally 1960).

[41]
Oprocha, P.. Specification properties and dense distributional chaos. Discrete Contin. Dyn. Syst.
17(4) (2007), 821–833.

[42]
Oprocha, P.. Distributional chaos revisited. Trans. Amer. Math. Soc.
361 (2009), 4901–4925.

[43]
Oprocha, P. and S̆tefánková, M.. Specification property and distributional chaos almost everywhere. Proc. Amer. Math. Soc.
136(11) (2008), 3931–3940.

[44]
Oxtoby, J. C.. Ergodic sets. Bull. Amer. Math. Soc. (N.S.)
58 (1952), 116–136.

[45]
Parry, W.. On the 𝛽-expansions of real numbers. Acta Math. Acad. Sci. Hungar.
11(3–4) (1960), 401–416.

[46]
Pesin, Y. B.. Dimension Theory in Dynamical Systems: Contemporary Views and Applications. University of Chicago Press, Chicago, IL, 1997.

[47]
Pesin, Y. B. and Pitskel’, B.. Topological pressure and the variational principle for noncompact sets. Funct. Anal. Appl.
18 (1984), 307–318.

[48]
Pfister, C. E. and Sullivan, W. G.. Large deviations estimates for dynamical systems without the specification property. Application to the 𝛽-shifts. Nonlinearity
18(1) (2005), 237–261.

[49]
Pfister, C. E. and Sullivan, W. G.. On the topological entropy of saturated sets. Ergod. Th. & Dynam. Sys.
27(3) (2007), 929–956.

[50]
Pikula, R.. On some notions of chaos in dimension zero. Colloq. Math.
107 (2007), 167–177.

[51]
Rényi, A.. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar.
8(3–4) (1979), 477–493.

[52]
Ruelle, D.. Historic behaviour in smooth dynamical systems. Global Analysis of Dynamical Systems. CRC Press, Boca Raton, FL, 2001, pp. 63–66.

[53]
Schweizer, B. and Smítal, J.. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer. Math. Soc.
344(2) (1994), 737–754.

[54]
Sigmund, K.. On dynamical systems with the specification property. Trans. Amer. Math. Soc.
190 (1974), 285–299.

[55]
Sklar, A. and Smítal, J.. Distributional chaos on compact metric spaces via specification properties. J. Math. Anal. Appl.
241(2) (2000), 181–188.

[56]
Smítal, J.. Symbolic dynamics for 𝛽-shifts and self-normal numbers. Ergod. Th. & Dynam. Sys.
17(3) (2000), 675–694.

[57]
Smítal, J. and S̆tefánková, M.. Distributional chaos for triangular maps. Chaos Solitons Fractals
21(5) 1125–1128.

[58]
Takens, F.. Orbits with historic behaviour, or non-existence of averages. Nonlinearity
21 (2008), 33–36.

[59]
Takens, F. and Verbitski, E.. On the variational principle for the topological entropy of certain non-compact sets. Ergod. Th. & Dynam. Sys.
23(1) (2003), 317–348.

[60]
Thompson, D.. The irregular set for maps with the specification property has full topological pressure. Dyn. Syst.
25(1) (2008), 25–51.

[61]
Thompson, D.. A variational principle for topological pressure for certain non-compact sets. J. Lond. Math. Soc. (2)
80(3) (2009), 585–602.

[62]
Thompson, D.. Irregular sets, the 𝛽-transformation and the almost specification property. Trans. Amer. Math. Soc.
364(10) (2012), 5395–5414.

[63]
Tian, X.. Different asymptotic behaviour versus same dynamicl complexity: recurrence & (ir)regularity. Adv. Math.
288 (2016), 464–526.

[64]
Tian, X. and Varandas, P.. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete Contin. Dyn. Syst. A
37(10) (2017), 5407–5431.

[65]
Yamamoto, K.. On the weaker forms of the specification property and their applications. Proc. Amer. Math. Soc.
137(11) (2009), 3807–3814.

[66]
Yan, Q., Yin, J. and Wang, T.. A note on quasi-weakly almost periodic point. Acta Math. Sin. (Engl. Ser.)
31(4) (2015), 637–646.

[67]
Zhou, Z. and Feng, L.. Twelve open problems on the exact value of the Hausdorff measure and on topological entropy: a brief survey of recent results. Nonlinearity
17(2) (2004), 493–502.

[68]
Zhou, Z. and He, W.. Level of the orbit’s topological structure and topological semi-conjugacy. Sci. China Ser. A
38(8) (1995), 897–907.