Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T03:10:47.283Z Has data issue: false hasContentIssue false

Cubic polynomials with a parabolic point

Published online by Cambridge University Press:  22 January 2010

P. ROESCH*
Affiliation:
IMT, Toulouse, France (email: pascale.roesch@math.univ-toulouse.fr)

Abstract

We consider cubic polynomials with a simple parabolic fixed point of multiplier 1. For those maps, we prove that the boundary of the immediate basin of attraction of the parabolic point is a Jordan curve (except for the polynomial z+z3 where it consists in two Jordan curves). Moreover, we give a description of the dynamics and obtain the local connectivity of the Julia set under some assumptions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Blanchard, P.. Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. 11 (1984), 85141.CrossRefGoogle Scholar
[2]Carleson, L. and Gamelin, T. W.. Complex dynamics. Springer, New York, 1993.CrossRefGoogle Scholar
[3]Douady, A. and Hubbard, J. H.. Étude dynamique des polynômes complexes, I & II. Publ. Math. d’Orsay, 1984–85.Google Scholar
[4]Douady, A. and Hubbard, J. H.. On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4) 18 (1985), 287343.CrossRefGoogle Scholar
[5]Goldberg, L. and Milnor, J.. Fixed points of polynomial maps. II. Fixed point portraits. Ann. Sci. École Norm. Sup. (4) 26(1) (1993), 5198.CrossRefGoogle Scholar
[6]Goluzin, G. M.. Geometric Theory of Functions of a Complex Variable (Translations of Mathematical Monographs, 26). American Mathematical Society, Providence, RI, 1969.CrossRefGoogle Scholar
[7]Kiwi, J.. Real laminations and the topological dynamics of complex polynomials. Adv. Math. 184(2) (2004), 207267.CrossRefGoogle Scholar
[8]Kozlovski, O., Shen, W. and van Strien, S.. Rigidity for real polynomials. Ann. of Math. (2) 165 (2007), 749841.CrossRefGoogle Scholar
[9]Lei, T. and Yongcheng, Y.. Local connectivity of the Julia set for geometrically-finite rational maps. Sci. China Ser. A 39 (1996), 3947.Google Scholar
[10]Lei, T. and Yongcheng, Y.. Unicritical Branner–Hubbard conjecture. Complex Dynamics, Family and Friends. Ed. Schleicher, D.. A. K. Peters, 2009.Google Scholar
[11]Lyubich, M. and Minsky, Y.. Laminations in holomorphic dynamics. J. Differential Geom. 47(1) (1997), 1794.CrossRefGoogle Scholar
[12]Milnor, J.. Local connectivity of Julia sets: expository lectures. The Mandelbrot Set, Theme and Variations (LMS Lecture Note Series, 274). Ed. Lei, Tan. Cambridge University Press, Cambridge, 2000, pp. 67116.CrossRefGoogle Scholar
[13]Milnor, J.. Dynamics in One Complex Variable, 3rd edn.(Annals of Mathematics Studies, 160). Princeton University Press, Princeton, NJ, 2006.Google Scholar
[14]Milnor, J.. Cubic polynomial maps with periodic critical orbit, Part I. Complex Dynamics, Family and Friends. Ed. Schleicher, D.. A. K. Peters Ltd., Wellesley, MA, 2009.Google Scholar
[15]Naĭshul’, V. A.. Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in C 2 and CP 2. Funktsional. Anal. i Prilozhen. 14(1) (1980), 7374 (in Russian).CrossRefGoogle Scholar
[16]Petersen, C. L.. On the Pommerenke–Levin–Yoccoz inequality. Ergod. Th. & Dynam. Sys. 13(4) (1993), 785806.Google Scholar
[17]Petersen, C. L. and Roesch, P.. Parabolic tools, J. Difference Equ. Appl. (2009) accepted for publication.Google Scholar
[18]Petersen, C. L. and Zakeri, S.. On the Julia set of a typical quadratic polynomial with a Siegel disk. Ann. of Math. (2) 159 (2004), 152.CrossRefGoogle Scholar
[19]Pommerenke, C.. Boundary Behaviour of Conformal Maps. Springer, Berlin, 1992.CrossRefGoogle Scholar
[20]Roesch, P.. Puzzles de Yoccoz pour les applications à allure rationnelle. Enseign. Math. (2) 45(1–2) (1999), 133168.Google Scholar
[21]Roesch, P.. Hyperbolic components of polynomials with fixed critical point of maximal order. Ann. Sci. École Norm. Sup. (4) 40(6) (2007), 901949.CrossRefGoogle Scholar
[22]Roesch, P.. Cubic parabolic slice. Manuscript.Google Scholar
[23]Roesch, P. and Yin, Y.. The boundary of bounded polynomial Fatou components. C. R. Math. Acad. Sci. Paris 346(15–16) (2008), 877888.CrossRefGoogle Scholar
[24]Steinmetz, N.. Rational iteration. Complex Analytic Dynamical Systems (de Gruyter Studies in Mathematics, 16). Walter de Gruyter, Berlin, 1993.Google Scholar
[25]Weiyuan, Q. and Yongcheng, Y.. Proof of the Branner–Hubbard conjecture on Cantor Julia sets. Sci. China Ser. A 52(1) (2009), 4565.Google Scholar
[26]Yoccoz, J.-C.. Petits diviseurs en dimension 1. Astérisque 231 (1995).Google Scholar