Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T15:02:30.767Z Has data issue: false hasContentIssue false

Contact Anosov flows and the Fourier–Bros–Iagolnitzer transform

Published online by Cambridge University Press:  03 November 2011

MASATO TSUJII*
Affiliation:
Department of Mathematics, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka, 819-0395, Japan (email: tsujii@math.kyushu-u.ac.jp)

Abstract

This paper is about spectral properties of transfer operators for contact Anosov flows. The main result gives the essential spectral radii of the transfer operators acting on an appropriate function space exactly and improves the previous result in Tsujii [Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity23 (2010), 1495–1545]. Also, we provide a simplified proof by using the so-called Fourier–Bros–Iagolnitzer (FBI) (or Bargmann) transform.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aebischer, B., Borer, M., Kälin, M., Leuenberger, Ch. and Reimann, H. M.. Symplectic Geometry (Progress in Mathematics, 124). Birkhäuser, Basel, 1994; MR 1296462(96a:58082).CrossRefGoogle Scholar
[2]Anosov, D. V.. Geodesic Flows on Closed Riemann Manifolds with Negative Curvature (Proceedings of the Steklov Institute of Mathematics, 90). American Mathematical Society, Providence, RI, 1969, translated from the Russian by S. Feder; MR∼0242194(39#3527).Google Scholar
[3]Baladi, V. and Tsujii, M.. Dynamical determinants and spectrum for hyperbolic diffeomorphisms. Probabilistic and Geometric Structures in Dynamics (Contemporary Mathematics, 469). American Mathematical Society, Providence, RI, 2008.CrossRefGoogle Scholar
[4]Dolgopyat, D.. On decay of correlations in Anosov flows. Ann. of Math. (2) 147 (1998), 357390; MR 1626749(99g:58073).CrossRefGoogle Scholar
[5]Faure, F.. Prequantum chaos: resonances of the prequantum cat map. J. Mod. Dyn. 1(2) (2007), 255285; MR 2285729(2008c:81050).CrossRefGoogle Scholar
[6]Faure, F. and Sjöstrand, J.. Upper bound on the density of ruelle resonances for Anosov flows. Preprint, 2010, arXiv:1003.0513.CrossRefGoogle Scholar
[7]Hopf, E.. Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261304; MR 0001464(1,243a).Google Scholar
[8]Hörmander, L.. The Analysis of Linear Partial Differential Operators III Pseudo-differential Operators (Classics in Mathematics). Springer, Berlin, 2007, reprint of the 1994 edition; MR 2304165(2007k:35006).CrossRefGoogle Scholar
[9]Liverani, C.. On contact Anosov flows. Ann. of Math. (2) 159(3) (2004), 12751312; MR 2113022(2005k:37048).CrossRefGoogle Scholar
[10]Martinez, A.. An Introduction to Semiclassical and Microlocal Analysis (Universitext). Springer, New York, 2002; MR 1872698(2003b:35010).CrossRefGoogle Scholar
[11]McKean, H. P.. Selberg’s trace formula as applied to a compact Riemann surface. Comm. Pure Appl. Math. 25 (1972), 225246; MR∼0473166(57#12843a).CrossRefGoogle Scholar
[12]Moore, C. C.. Exponential decay of correlation coefficients for geodesic flows. Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics (Berkeley, CA, 1984) (Mathematical Sciences Research Institute Publications, 6). Springer, New York, 1987, pp. 163181; MR 880376(89d:58102).CrossRefGoogle Scholar
[13]Ratner, M.. The rate of mixing for geodesic and horocycle flows. Ergod. Th. & Dynam. Sys. 7(2) (1987), 267288; MR 896798(88j:58103).CrossRefGoogle Scholar
[14]Sinaĭ, Ja. G.. Geodesic flows on compact surfaces of negative curvature. Soviet Math. Dokl. 2 (1961), 106109; MR∼0123678(23#A1002).Google Scholar
[15]Sjöstrand, J.. Function spaces associated to global I-Lagrangian manifolds. Structure of Solutions of Differential Equations (Katata/Kyoto, 1995). World Scientific Publication, River Edge, NJ, 1996, pp. 369423; MR 1445350(98i:58230).Google Scholar
[16]Tsujii, M.. Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity 23 (2010), 14951545.CrossRefGoogle Scholar
[17]Yosida, K.. Functional Analysis (Classics in Mathematics). Springer, Berlin, 1995, reprint of the sixth (1980) edition; MR 1336382(96a:46001).CrossRefGoogle Scholar